* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    Hoje às 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26
  • joca34: BOM DIA AL TEM ESTE CD Star Music - A Minha prima Palmira
    23 de Janeiro de 2026, 15:23
  • joca34: OLA
    23 de Janeiro de 2026, 15:23
  • FELISCUNHA: Bom dia pessoal  4tj97u<z
    23 de Janeiro de 2026, 10:59

Autor Tópico: Machine learning Basics and Advanced Topics Using Python  (Lida 146 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Machine learning Basics and Advanced Topics Using Python
« em: 21 de Agosto de 2025, 12:41 »


Published 8/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 47m | Size: 295 MB

Machine learning


What you'll learn
Introduction, Machine Learning (ML) Definition, Types of learning Techniques: Supervised Learning, Un-supervised Learning, Reinforcement Learning
Dataset Analysis, Preprocessing Techniques, Framework of ML Development for a Project in Business
Explaining supervised ML algorithms such as Linear Regression, Logisitc Regression, Support vector Machines, Decision Trees, Naive bayes, KNN, Random Forrest
Explaining unsupervised ML algorithms such as Hierarchical Clustering, DBSCAN, PCA
Explaining Reinforcement Learning algorithms such as Q-learning, Deep Q-Network (DQN)
Implementing ML algorithms using Python
Requirements
Python
Description
Introduction to Machine Learning •Overview•What is Machine Learning (ML)?•Workflow of Machine Learning Model•How to Obtain Best Results with a ML Model?•Types of Tasks Using Machine Learning Models•Terminologies•Responsibilities of Job Positions in Machine Learning•Some Applications of Machine Learning•Some Forecasting Applications Used in Business•Prediction of Time Series Data•Nature/behavior of Time series data may be include:•Other Applications Used in Business Using Machine Learning•Challenges of Machine Learning•Some Issues in Machine Learning•Hugging Face•Python Tools & Python LibrariesLearning Techniques •What is Difference between Traditional Programming & Machine Learning?•Machine learning in Practice•Machine learning FrameworksTypes of Learning•Supervised Learning•Unsupervised Learning•Reinforcement LearningML Tasks & Applications•Regression•Classification•Clustering•Dimensionality ReductionExample on Supervised Learning in Learning PhaseExample on Supervised Learning in Prediction PhaseML Learning Algorithms/TechniquesAdvs. & Disadvs. of ML AlgorithmsMachine learning (ML) for ClassificationMachine Learning (ML) for RegressionMachine Learning ProcessOverall Process of Building a ML ModelDataset Analysis • Data Overview• Dataset Workloads• Typical dataset composition• Sources of Dataset• Data Types• Framework for a Business Problem• Data Collection & labeling dataData Evaluation•Format of Data•Examine Data Types•Describe Dataset with its Statistics•VisualizationData Processing•Data cleansing•Feature EngineeringData Conversion•Data Encoding•Data scalingData ImbalancedSMOTESupervised Learning AlgorithmsLinear Regression (LR)Logistics RegressionSupport Vector Machine (SVM)Decision Tree (DT)Naïve Bayes (NB)K-Nearest Neighbor (KNN)Ensemble Learning: Bagging Techniques e.g. Random Forest (RF)Ensemble Learning: Boosting Techniques e.g. Gradient Boosting Decision Trees (GBDT)Unsupervised Learning AlgorithmsK-meansHierarchical ClusteringDBSCANPrinciple Component Analysis (PCA)Reinforcement LearningQ-LearningDeep Q-Network (DQN)
Who this course is for
for all
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/machine-learning-basics-and-advanced-topics-using-python/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/43177c73f2a857a549f4f3f5a557751e/jqvci.Machine.learning.Basics.and.Advanced.Topics.Using.Python.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/B13E4B6589B2540/jqvci.Machine.learning.Basics.and.Advanced.Topics.Using.Python.rar