* Cantinho Satkeys

Refresh History
  • cereal killa: 2dgh8i  1j6iv5
    Hoje às 20:15
  • cereal killa: try65hytr pessoal  2dgh8i  classic
    Hoje às 20:00
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    10 de Janeiro de 2026, 12:21
  • asakzt: Managing database versions with Liquibase and Spring Boot
    10 de Janeiro de 2026, 11:35
  • tita: Musica Box Pop
    09 de Janeiro de 2026, 12:18
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    08 de Janeiro de 2026, 11:01
  • j.s.: try65hytr a todos  49E09B4F
    07 de Janeiro de 2026, 20:37
  • TWT: Interaction Design Specialization
    07 de Janeiro de 2026, 07:38
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    05 de Janeiro de 2026, 10:33
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    03 de Janeiro de 2026, 12:26
  • JPratas: try65hytr Pessoal Continuação de
    02 de Janeiro de 2026, 19:42
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18
  • j.s.: dgtgtr a todos  49E09B4F
    31 de Dezembro de 2025, 17:17
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano de 2026  4tj97u<z
    31 de Dezembro de 2025, 11:55

Autor Tópico: Enterprise RAG (MEAP V03)  (Lida 49 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Enterprise RAG (MEAP V03)
« em: 26 de Julho de 2025, 10:33 »


English | 2025 | ISBN: 9781633435476 | 211 pages | PDF,EPUB | 13.23 MB


Securely blend advanced LLM with your own databases, documentation, and code repos using these techniques for enterprise-quality retrieval augmented generation.
Retrieval Augmented Generation, or RAG, is the gold standard for using domain-specific data, such as internal documentation or company databases, with large language models (LLMs). Creating trustworthy, stable RAG solutions you can deploy, scale, and maintain at the enterprise level means establishing data workflows that maximize accuracy and efficiency, addressing cost and performance problems, and building in appropriate checks for privacy and security. This book shows you how.
Inside Enterprise RAG you'll learn
Build an enterprise-level RAG system that scales to meet demand
RAG over SQL databases
Fast, accurate searches
Prevent AI "hallucinations"
Monitor, scale, and maintain RAG systems
Cost-effective cloud services for AI
Enterprise RAG goes beyond the theory and proof-of-concept examples you find in most books and online discussions, digging into the real issues you encounter deploying and scaling RAG in production. In this book, you'll build a RAG-based information retrieval app that intelligently assesses data from common business sources, chooses the appropriate context for your LLM, and even writes custom SQL queries as needed.

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/f6cba607300b874b6cc161aba953d85f/qjevg.Enterprise.RAG..MEAP.V03.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/D3FD1866C420A50/qjevg.Enterprise.RAG..MEAP.V03.rar