* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    16 de Outubro de 2024, 01:41

Autor Tópico: Introduction to Machine Learning by Kevin Brand  (Lida 2 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115290
  • Karma: +0/-0
Introduction to Machine Learning by Kevin Brand
« em: 29 de Outubro de 2024, 10:46 »
Introduction to Machine Learning by Kevin Brand


Published 10/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 5h 42m | Size: 3.54 GB

A beginners guide to commonly used machine learning models and terminology


What you'll learn
Define the fundamental aspects of data pipelines that is necessary for machine learning
Identify the potential pitfalls when building data pipelines
Recognize the different types of machine learning models and explain their differences
Discuss popular supervised machine learning models
Understand popular unsupervised clustering algorithms
Broadly define what neural networks are
Know what some of the most popular neural network variants are and when to use them
Utilize machine learning fundamentals to implement basic solutions to classification and regression problems
Requirements
Some programming experience will be beneficial for exercises and examples, but is not required.
Description
This course aims to provide students with a broad overview of the field of machine learning and will introduce some important terms and techniques which will enable them to follow a discussion on the topic. I will discuss the fundamental aspects of data pipelines and will point out what some of the common pitfalls are when preparing data for a machine learning project. I will also discuss what the different types of machine learning models are and how they differ from deep learning models.Broad overviews will be provided of some of the most popular supervised and unsupervised models and students will be introduced to some of the popular neural network variants. This will be followed by a few practical demonstrations which will show students how they can combine the discussed topics to create basic machine learning solutions.This course will not provide in-depth explanations regarding the mathematical underpinnings of these models, nor will it provide detailed discussions regarding how to implement machine learning models from scratch. Instead, the aim is to simplify and condense the subject matter to provide students with an easily digestible introduction to the field.Whether students are employers or employees, we believe it to be highly beneficial to have a basic understanding of what machine learning models are and what they are not --- especially as machine learning tools become increasingly common in many domains.
Who this course is for
Software engineers that want to be able to follow discussions about the machine learning pipeline
Managers that are looking to incorporate machine learning into their business and want to better understand the intricacies of doing so
Prospective students that want to establish whether machine learning is the right field for them
This course is not intended for learners with prior machine learning knowledge
This course is not intended for learners that wants to understand the mathematical foundations of machine learning
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/introduction-to-machine-learning-f/
Screenshots


Say "Thank You"

rapidgator.net:
Citar
https://rapidgator.net/file/3bf7353da2d5a5eb2e3e19810e352f7e/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part1.rar.html
https://rapidgator.net/file/90bc68812ca646dcbc6b29a188578980/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part2.rar.html
https://rapidgator.net/file/25773b8bf8839c4e6ab620f1905191d4/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part3.rar.html
https://rapidgator.net/file/2eb6c6bfd69d653bf1e073b2ff5f1049/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part4.rar.html

ddownload.com:
Citar
https://ddownload.com/itecr3ifqoxz/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part1.rar
https://ddownload.com/d99gsvav448z/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part2.rar
https://ddownload.com/14zcz1ruv4s4/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part3.rar
https://ddownload.com/jouxbm3xzizu/dsjha.Introduction.to.Machine.Learning.by.Kevin.Brand.part4.rar