* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    Hoje às 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33
  • FELISCUNHA: try65hytr  pessoal   htg6454y
    26 de Junho de 2025, 21:33
  • JPratas: try65hytr Pessoal  4tj97u<z
    26 de Junho de 2025, 02:28
  • cereal killa: Boa Tarde Pessoal E com enorme tristeza que depois de 15 anos que idealizei e abri este fórum vejo que esta na iminência de fechar portas porque ninguém tenta ajudar o pagamento do servidor, mas cada ano e sempre difícil arranjar almas caridosas que nos bom ajudando mas este ano esta complicado, mas infelizmente e como diz o j.s dia 5/07 se não houver algumas ajudas esta vez vai mesmo fechar…..e pena e triste mas tudo na vida tem fim. obrigada cereal killa
    25 de Junho de 2025, 19:40

Autor Tópico: Deep Learning for time-series forecasting on Carbon Dioxide  (Lida 47 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Deep Learning for time-series forecasting on Carbon Dioxide
« em: 26 de Setembro de 2024, 10:03 »
Deep Learning for time-series forecasting on Carbon Dioxide



Published 9/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 22m | Size: 743 Mb
Use Machine Learning methodologies in Python - a step by step methodology for accurate forecasts


What you'll learn
Understand and apply deep learning models for time-series forecasting of CO2 emissions using Python.
Implement a step-by-step methodology for generating accurate CO2 forecasts, incorporating statistical tests and analysis.
Analyze and forecast long-term carbon dioxide trends across different regions, including India, the USA, the UK, and more.
Develop practical skills in data preprocessing, model validation, and performance optimization to create reliable environmental forecasts.
Requirements
No prerequisites except basic Python.
Description
This course, "Deep Learning for Time-Series Forecasting on Carbon Dioxide, in Python," will guide you through building advanced models for predicting CO2 levels far into the future. Focusing on real-world applications, you'll explore how to forecast carbon emissions across key regions, including India, the USA, and the UK. You will gain hands-on experience by following a step-by-step methodology, ensuring you understand each phase of the forecasting process. Starting with data preprocessing and statistical analysis, the course will guide you through building deep learning models. You'll also perform key statistical tests to validate the accuracy of your forecasts. By the end, you'll be proficient in creating highly accurate long-term predictions, applying them to global environmental trends, and gaining insights that can help address climate change challenges.Accurate forecasts on CO2 levels are critical for understanding and addressing the impacts of climate change. Reliable predictions help governments, organizations, and policymakers make informed decisions on how to reduce emissions and meet international climate goals. They are also essential for anticipating future trends in global warming, sea-level rise, and extreme weather events, allowing for better planning and adaptation strategies. Furthermore, accurate CO2 forecasts can guide investments in renewable energy, carbon capture technologies, and sustainable practices, helping mitigate the long-term effects of climate change. Overall, precise forecasting is a crucial tool for safeguarding the planet's future.
Who this course is for
Data scientists and analysts interested in applying deep learning techniques to environmental data and forecasting.
Climate researchers and environmental professionals looking to enhance their skills in predictive modeling for CO2 emissions.
Python programmers and developers eager to learn how to build time-series forecasting models using deep learning frameworks.
Policy makers, energy analysts, and sustainability consultants who need accurate long-term CO2 forecasts to inform decision-making.
Graduate students or academics in fields such as environmental science, data science, or machine learning, seeking practical applications in forecasting.

Homepage:
Código: [Seleccione]
https://www.udemy.com/course/deep-learning-for-time-series-forecasting-on-co2/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/a431db0e2f4c2884a485357dcc2efb34/kcidn.Deep.Learning.for.timeseries.forecasting.on.Carbon.Dioxide.rar.html

ddownload.com:
Citar
https://ddownload.com/nz055mm12a51/kcidn.Deep.Learning.for.timeseries.forecasting.on.Carbon.Dioxide.rar