* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    Hoje às 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Machine Learning Theory (Basic) NEW  (Lida 31 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117271
  • Karma: +0/-0
Machine Learning Theory (Basic) NEW
« em: 29 de Agosto de 2024, 06:26 »
Machine Learning Theory (Basic) NEW



Published 8/2024
Duration: 44m | Video: .MP4, 1920x1080 30 fps | Audio: AAC, 44.1 kHz, 2ch | Size: 349 MB
Genre: eLearning | Language: English

Best Theory Course for ML


What you'll learn
Where to Collect Data For Machine Learning? | Data Collection
Data Preprocessing Techniques/Steps
Feature Engineering for Machine Learning
Supervised vs Unsupervised vs Reinforcement Learning
Requirements
Basic Computer Literacy: Familiarity with using a computer, including browsing the internet, using basic software, and managing files.
Interest in Programming: A genuine interest in learning programming and problem-solving techniques.
Access to a Computer: A personal computer with a stable internet connection to participate in online classes, complete assignments, and practice coding.
Basic Understanding of Mathematics: Knowledge of high school-level mathematics, including algebra, is beneficial for understanding algorithms and data structures.
Description
The
"Machine Learning Theory (Basic)"
course offers a thorough introduction to the core principles and foundational concepts of machine learning, making it an ideal starting point for beginners. This course is designed to demystify the complex world of machine learning by breaking down the essential topics that form the backbone of this rapidly growing field. Students will begin with understanding the basics of data collection, learning where and how to gather relevant data, a critical first step in any machine learning project.
As the course progresses, students will delve into data preprocessing techniques, which are vital for transforming raw data into a format suitable for modeling. This includes learning how to clean data, handle missing values, and normalize datasets, ensuring that the data is in optimal condition for analysis.
Feature engineering, another key topic, will teach students how to create and select the most relevant features to enhance model performance. This skill is crucial as it directly impacts the accuracy and effectiveness of machine learning models.
The course also provides a comprehensive overview of the different learning paradigms-supervised, unsupervised, and reinforcement learning-offering students insight into when and how to apply each method. By the end of this course, students will have gained a strong theoretical foundation in machine learning, equipping them with the knowledge to advance to more specialized studies or to begin applying these concepts to real-world problems with confidence.
Who this course is for
Beginners in Machine Learning: Individuals who are new to the field of machine learning and want to understand the foundational concepts and theories.
Aspiring Data Scientists and ML Engineers: Those who aim to build a career in data science or machine learning and are looking for an entry point into the field.
Professionals Seeking to Enhance Their Skills: Professionals who want to add machine learning knowledge to their existing skill set, regardless of their background.
Individuals Preparing for Further Studies: Those planning to pursue advanced studies or certifications in machine learning and wish to establish a strong theoretical foundation.

Homepage:


Código: [Seleccione]
https://www.udemy.com/course/machine-learning-theory-basic-new/

Screenshots






Download link






rapidgator.net:
Citar
https://rapidgator.net/file/29377cd608ada6652d69ce5df1aadaa0/mibvy.Machine.Learning.Theory.Basic.NEW.rar.html

nitroflare.com:
Citar
https://nitroflare.com/view/EBFCA38BEABB71A/mibvy.Machine.Learning.Theory.Basic.NEW.rar