* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26
  • joca34: BOM DIA AL TEM ESTE CD Star Music - A Minha prima Palmira
    23 de Janeiro de 2026, 15:23
  • joca34: OLA
    23 de Janeiro de 2026, 15:23

Autor Tópico: Decision Trees using R - Bank Loan Default Prediction  (Lida 179 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Decision Trees using R - Bank Loan Default Prediction
« em: 02 de Novembro de 2023, 10:36 »


Decision Trees using R - Bank Loan Default Prediction
Published 10/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 30m | Size: 925 MB
Learn Decision Trees using R with a case study to predict Bank Loan Default

What you'll learn
The decision tree is a key challenge in R and the strength of the tree is they are easy to understand and read when compared with other models.
This course makes one become proficient to build predictive and tree-based learning models
This course includes learning decision tree modeling which are used by data scientists or people who aspire to be the data scientist
Implementation of Decision Tree Classifications using R
Requirements
Basics of R
Description
The decision tree is a key challenge in R and the strength of the tree is they are easy to understand and read when compared with other models. They are being popularly used in data science problems. These are the tool produces the hierarchy of decisions implemented in statistical analysis. Statistical knowledge is required to understand the logical interpretations of the Decision tree. As we have seen the decision tree is easy to understand and the results are efficient when it has fewer class labels and the other downside part of them is when there are more class labels calculations become complexed. This course makes one become proficient to build predictive and tree-based learning models.
Decision Tree in R is a machine-learning algorithm that can be a classification or regression tree analysis. The decision tree can be represented by graphical representation as a tree with leaves and branches structure. The leaves are generally the data points and branches are the condition to make decisions for the class of data set. Decision trees in R are considered as supervised Machine learning models as possible outcomes of the decision points are well defined for the data set. It is also known as the CART model or Classification and Regression Trees. There is a popular R package known as rpart which is used to create the decision trees in R.
To work with a Decision tree in R or in layman terms it is necessary to work with big data sets and direct usage of built-in R packages makes the work easier. A decision tree is non- linear assumption model that uses a tree structure to classify the relationships. The Decision tree in R uses two types of variables: categorical variable (Yes or No) and continuous variables. The terminologies of the Decision Tree consisting of the root node (forms a class label), decision nodes(sub-nodes), terminal node (do not split further). The unique concept behind this machine learning approach is they classify the given data into classes that form yes or no flow (if-else approach) and represents the results in a tree structure. The algorithm used in the Decision Tree in R is the Gini Index, information gain, Entropy. There are different packages available to build a decision tree in R: rpart (recursive), party, random Forest, CART (classification and regression). It is quite easy to implement a Decision Tree in R.
For clear analysis, the tree is divided into groups: a training set and a test set. The following implementation uses a car dataset. This data set contains 1727 obs and 9 variables, with which classification tree is built. In this article lets tree a 'party 'package. The function creates () gives conditional trees with the plot function.
Who this course is for
Data Engineers, Analysts, Architects, Software Engineers, IT operations, Technical managers
Anyone who wants to learn about data and analytics

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/750785e855edce463901f4230de41c4a/oudls.Decision.Trees.using.R..Bank.Loan.Default.Prediction.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/762e4bD22d4cf3ac/oudls.Decision.Trees.using.R..Bank.Loan.Default.Prediction.rar

nitroflare.com:
Citar
https://nitroflare.com/view/597FB9CFDF18272/oudls.Decision.Trees.using.R..Bank.Loan.Default.Prediction.rar