* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Novembro de 2024, 11:23
  • cereal killa: try65hytr pessoal ta chegar as prendas  k8h9m  p0i8l
    26 de Novembro de 2024, 21:10
  • paulo93: boa noite a todos podem por olink deste cd Marco Paulo – Best of (2016) obrigado
    26 de Novembro de 2024, 19:06
  • JPratas: try65hytr Pessoal  49E09B4F classic k7y8j0
    26 de Novembro de 2024, 00:54
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31

Autor Tópico: Logistic Regression using SPSS  (Lida 67 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Logistic Regression using SPSS
« em: 31 de Outubro de 2023, 03:09 »


Logistic Regression using SPSS
Published 10/2023
Created by EDUCBA Bridging the Gap
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 14 Lectures ( 2h 2m ) | Size: 988 MB
Learn about a comprehensive framework of the right skills that you can master to be a successful Data Analyst

What you'll learn
course aims to provide and enhance predictive modelling skills across business sectors
The course picks theoretical and practical datasets for predictive analysis
Observations, interpretations, predictions and conclusions are explained then and there on the examples as we proceed through the training
The course also emphasizes on the higher order regression models such as quadratic and polynomial regressions
Requirements
Prior knowledge of Quantitative Methods, MS Office and Paint is desired.
Description
Logistic regression in SPSS is defined as the binary classification problem in the field of statistic measuring. The difference between a dependent and independent variable with the guide of logistic function by estimating the different occurrence of the probabilities, i.e., it is used to predict the outcome of the independent variable (1 or 0 either yes/no) as it is an extension of a linear regression which is used to predict the continuous output variables.Logistic regression is a technique used in the field of statistics measuring the difference between a dependent and independent variable with the guide of logistic function by estimating the different occurrence of probabilities. They can be either binomial (has yes or No outcome) or multinomial (Fair vs poor very poor). The probability values lie between 0 and 1, and the variable should be positive (<1).It targets the dependent variable and has the following steps to follow:n- no. of fixed trials on a taken dataset.With two outcomes trial.The outcome of the probability should be independent of each other.The probability of success and failures must be the same at each trial.Predictive modelling course aims to provide and enhance predictive modelling skills across business sectors/domains. Quantitative methods and predictive modelling concepts could be extensively used in understanding the current customer behavior, financial markets movements, and studying tests and effects in medicine and in pharma sectors after drugs are administered. The course picks theoretical and practical datasets for predictive analysis. Implementations are done using SPSS software. Observations, interpretations, predictions and conclusions are explained then and there on the examples as we proceed through the training. The course also emphasizes on the higher order regression models such as quadratic and polynomial regressions which aren't covered in other online courses Essential skillsets - Prior knowledge of Quantitative methods and MS Office, Paint Desired skillsets -- Understanding of Data Analysis and VBA toolpack in MS Excel will be usefulThe course works across multiple software packages such as SPSS, MS Office, PDF writers, and Paint.Regression modelling forms the core of Predictive modelling course. The core objective of this course is to provide skills in understand the regression model and interpreting it for predictions. The associated parameters of the regression model will be interpreted and tested for significance and test the goodness of fit of the given regression model.Through this course we are going to understand:Interpretation of regression attributes such as R-Squared (correlation coefficient), t and p valuesm (slope) and c (intercept),Dependent variables (Y), independent (A1, A2, A3..) variables, and Binary/Dummy B1, B2, B3 ...) variablesExamining significance/relevance of A, B variables for regression model (equation) goodness of fitPredicting Y-variable upon varying values of A, B variablesUnderstanding Multi-Collinearity and its disadvantagesImplementation on sample datasets using SPSS and output simulation in MS Excel
Who this course is for
Data Engineers, Analysts, Architects, Software Engineers, IT operations, Technical managers

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/7dcbb2d857570f43881fda8f73986076/cywnb.Logistic.Regression.using.SPSS.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/e59ae75Fb4c460ce/cywnb.Logistic.Regression.using.SPSS.rar

nitroflare.com:
Citar
https://nitroflare.com/view/B345CF08B18E921/cywnb.Logistic.Regression.using.SPSS.rar