* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    11 de Julho de 2025, 03:54
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    10 de Julho de 2025, 10:40
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13

Autor Tópico: Python Data Visualization using Seaborn - Beginners  (Lida 136 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Python Data Visualization using Seaborn - Beginners
« em: 21 de Julho de 2021, 01:57 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 17 lectures (2 hour, 23 mins) | Size: 1.32 GB
Learn attractive and informative statistical graphics and data visualization in Python

What you'll learn

One will learn about introduction to seaborn, review of the training, different types of Descriptions, distribution Description, scatterDescription and heat map, case studies of scatter Description, boxDescription, bank problem, case study on swarm Description, etc.
Other skills that are going to be covered under this training program is visualizing statistical relationships which include scatterDescriptions, line Descriptions, Descriptionting with categorical data, showing multiple relationships with facets, categorical scatter Descriptions, distribution of observations with categories, statistical estimation with categories, count Description, point Description, boxDescription, bar Description, use of reference files, etc.

Requirements

The user should also have a mathematical background as most of the algorithms being used and the concepts which are discussed are mathematics-based.
The basic prerequisite for this course is that the student or the professional should have a basic knowledge and understanding of the machine learning tools and techniques and also should have a basic knowledge and overview of the data science techniques. Apart from this, he should also be aware of the basic analytical concepts which are a must while opting for this course.

Description

As training goes ahead, individuals will start realizing the importance and value of seaborn training with diverse skills and concepts that are going to be taught under this training program. The curriculum of the training program is developed in such a way that it helps in getting all the industry requirements and also takes squares of individuals' requirements who are investing their time and efforts in learning something new and interesting. The core skills that are going to be covered under this training program are as follows:

Introduction of Seaborn

Visualizing Statistical Relationships

Scatter Description

Line Descriptions

Descriptionting with Categorical Data

Showing Multiple Relationships with Facets

Categorical ScatterDescriptions

Distributions of Observations within Categories

Statistical Estimation within Categories

CountDescription

PointDescription

BoxenDescription

ViolenDescription

BarDescription

SwarmDescription

StripDescription

CatDescription

One will learn about introduction to seaborn, o review of the training, different types of Descriptions, distribution Description, scatterDescription and heat map, case studies of scatter Description, boxDescription, bank problem, case study on swarm Description, etc.

Other skills that are going to be covered under this training program is visualizing statistical relationships which include scatterDescriptions, line Descriptions, Descriptionting with categorical data, showing multiple relationships with facets, categorical scatter Descriptions, distribution of observations with categories, statistical estimation with categories, count Description, point Description, boxDescription, bar Description, use of reference files, etc.
Who this course is for:

Data scientists, data engineers, analysts, consultants, software developers, software engineers, testers.
The target audience becomes anybody who is interested in learning this Python Seaborn Tutorial and follows the above-mentioned pre-requisites
Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction