* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Data Cleansing Master Class in Python  (Lida 89 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Data Cleansing Master Class in Python
« em: 20 de Julho de 2021, 08:51 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 104 lectures (3h 31m) | Size: 1.12 GB
The Complete Guide to Data Cleansing for Machine Learning Engineers

What you'll learn:
You'll learn data imputation and advanced data cleansing techniques.
You'll learn how to apply real-world data cleansing techniques to your data.
You'll learn advanced data cleansing techniques.
You'll learn how to prepare data in a way that avoids data leakage, and in turn, incorrect model evaluation.

Requirements
You'll need a really solid foundation in Python.
You'll need to understand the basics of machine learning.

Description
Welcome to Data Cleansing Master Class in Python.

Data preparation may be the most important part of a machine learning project. It is the most time consuming part, although it seems to be the least discussed topic. Data preparation, sometimes referred to as data preprocessing, is the act of transforming raw data into a form that is appropriate for modeling.

Machine learning algorithms require input data to be numbers, and most algorithm implementations maintain this expectation. Therefore, if your data contains data types and values that are not numbers, such as labels, you will need to change the data into numbers. Further, specific machine learning algorithms have expectations regarding the data types, scale, probability distribution, and relationships between input variables, and you may need to change the data to meet these expectations.

In the course you'll learn:

The importance of data preparation for predictive modeling machine learning projects.

How to prepare data in a way that avoids data leakage, and in turn, incorrect model evaluation.

How to identify and handle problems with messy data, such as outliers and missing values.

How to identify and remove irrelevant and redundant input variables with feature selection methods.

How to know which feature selection method to choose based on the data types of the variables.

How to scale the range of input variables using normalization and standardization techniques.

How to encode categorical variables as numbers and numeric variables as categories.

How to transform the probability distribution of input variables.

How to transform a dataset with different variable types and how to transform target variables.

How to project variables into a lower-dimensional space that captures the salient data relationships.

This course is a hands on-guide. It is a playbook and a workbook intended for you to learn by doing and then apply your new understanding to the feature engineering in Python. To get the most out of the course, I would recommend working through all the examples in each tutorial. If you watch this course like a movie you'll get little out of it.

In the applied space machine learning is programming and programming is a hands on-sport.

Thank you for your interest in Data Cleansing Master Class in Python.

Let's get started!

Who this course is for
You are serious about become a machine learning engineer in the real-world.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction