* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: 2021 Master Class: Machine Learning Using Google Cloud (updated)  (Lida 88 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 1.51 GB | Duration: 5h 27m

What you'll learn
Machine learning concepts
How to code and access data stored in a cloud environment
Simple and Multiple Linear Regression
Logistics Regression
Decision Tree
Random Forest
XG Boost
Unsupervised Algorithms - Centroid (kNN based) and Hierarchical
How to go about a ML project
Python programming
Exploratory Data Analysis (EDA)

Requirements
None. (Python is covered extensively in the course)

Description
Machine learning is a subset of artificial intelligence that is at the forefront of digital transformation in the world. Thanks to machine learning, it is now possible to detect diseases, know the defaulters of a loan and know the future sales of a product. All these information can be had proactively and not as an after the fact scenario. Machine learning and artificial intelligence-based roles are in great demand in the job market and such roles offer a higher salary than traditional programming roles.

This course covers the concepts of machine learning as well as the application of these concepts using case studies and examples, along with a walk through of the python codes. Python programming is also covered for the benefit of those who are new to python and those who want to refresh some of the topics in python.

The following algorithms are covered in detail:

Simple and multiple linear regression

Logistic regression

Decision tree, Random forest and XG boost

Unsupervised algorithms - Cluster (kNN based) and Hierarchical.

Learners will also understand how to develop the above machine learning in a cloud environment. They will learn not just to code in cloud but also to access the data stored in cloud. This will be particularly helpful to learners since many organizations are adopting cloud at a fast pace.

A key aspect of the course is the coverage of Exploratory Data Analysis (EDA). EDA covers the set of activities that you do before you start the ML project.

Lastly, how to pursue a machine learning project has been covered.

This course is taught by an industry veteran, who brings his vast experiences and practical perspectives into the program.

Who this course is for:
Professionals wanting to shift to ML roles
Students
ML professionals who are looking for a refresher

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction