* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    Hoje às 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46

Autor Tópico: 2021 Linear Algebra for Machine Learning  (Lida 221 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
2021 Linear Algebra for Machine Learning
« em: 07 de Julho de 2021, 10:08 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 753 MB | Duration: 3h 17m

What you'll learn
The applications to Machine Learning
The Fundamentals of Linear Algebra
Operations on a single matrices and multiple matrices
How to perform elementary row operations
Learn how to find the inverse Matrix
Learn how to solve systems of linear equations
Understand matrices as vectors and vector spaces
Will also study Linear combinations and span
As well as subspaces, null-space, basis, standard basis and more
Requirements
Familiarity with secondary-school-level mathematics.
Ability to perform basic mathematical operations on numbers and fractions.
Knowledge of how to solve linear equations.
Understanding of basic algebra concepts.
Description
Good data scientists are familiar with machine learning libraries and algorithms. It is akin to being an amazing pilot of an airplane, with skills that go beyond flying and borders an airplane mechanic. But to be a great data scientist, those skills will have to surpass the mechanics and thus require a greater understanding.

The great data scientist knows how those libraries and algorithms work under the hood. The great data scientist understands the mathematics behind the science. With the speed of technology, there may come a day when the algorithm itself replaces the data scientist. If we look at our original analogy, this would be akin to planes that truly fly themselves.

We are not there yet, but in this scenario the pilot becomes expensive and obsolete. However, the one person who is never obsolete is the engineer who designs the plane or the mechanic who fixes the plane. Linear Algebra is a cornerstone of machine learning. Linear Algebra not only helps improve an intuitive understanding of Machine learning. But Linear Algebra can help the machine learning engineer build better Machine Learning algorithms from Scratch or customize the parameters involved to optimize the algorithms. In this course you will learn about the Linear Algebra behind the Machine Learning Algorithm.

Who this course is for:
Students of Machine Learning
Students of Data Science
Students of Statistical Learning
Students of Linear Algebra
Students of Mathematics

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction