* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: TensorFlow Lite for Mobile Development: Deploy Machine Learning Models on Embedded and Mobile Devic  (Lida 132 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117505
  • Karma: +0/-0

TensorFlow Lite for Mobile Development: Deploy Machine Learning Models on Embedded and Mobile Devices
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 41M | 725 MB
Genre: eLearning | Language: English

Deploy machine learning models more easily and efficiently on embedded and mobile devices using TensorFlow Lite (TFLite). TFLite is an open source deep learning framework developed by Google.

Look under the hood at the system architecture to see how and when to use each component of TFLite. In the first section, you will learn what makes TFLite different from standard TensorFlow and other products like TFMobile. In the next section, you will learn about the pre-trained model that is available in TFLite, and how to use that pre-trained model to build your own. You will also learn how to convert a TensorFlow model into the TFLite format and train it. After that, you will cover the concept of transfer learning and how you can apply transfer learning to train a pre-trained model to perform some custom tasks in TFLite.

Having trained the model, you'll use the TFLite interpreter to run a machine learning model on mobile platforms. As part of this you will review a simple Android app, which will help you to start using TFLite on mobile devices. Running machine learning models on mobile devices is really exciting but it also comes with challenges so, you will need to optimize your model to reduce your app's size.

Finally, you will learn how to run TFLite on embedded devices such as Raspberry Pi. Overall this video will help anyone who wants to start learning TFLite and train their own machine learning models using TFLite. After watching this video, you can apply your newly learned TFLite skills to your own projects.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction