* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    Hoje às 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Working with PANDAS  (Lida 223 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117500
  • Karma: +0/-0
Working with PANDAS
« em: 13 de Julho de 2020, 06:03 »

Working with PANDAS
Duration: 57m | .MP4 1920x1080, 30 fps(r) | AAC, 44100 Hz, 2ch | 540 MB
Genre: eLearning | Language: English

What is Pandas
Pandas is Python's ETL package for structured data
Built on top of numpy, designed to mimic the functionality of R dataframes
Provides a convenient way to handle tabular data
Can perform all SQL functionalities, including group-by and join.
Compatible with many other Data Science packages, including visualisation packages such as MatDescriptionlib and Seaborn
Defines two main data types:
pandas.Series
pandas.DataFrame

Series
Generalised array -- can be viewed as a table with a single column
It consists of two numpy arrays:
Index array: stores the index of the elements
values array: stores the values of the elements
Each array element has an unique index (ID), contained in a separate index array
If we reorder the series, the index moves with element. So an index will always identify with the same element in the series
Indices do not have to be sequential, they do not even have to be numbers.
Think indices as the primary keys for each row in a single column table

DataFrames
A pandas DataFrame represents a table, it contains
Data in form of rows and columns
Row IDs (the index array, i.e. primary key)
Column names (ID of the columns)
A DataFrame is equivalent to collection of Series with each Series representing a column
The row indices by default start from 0 and increase by one for each subsequent row, but just like Series they can be changed to any collection of objects
Each row index uniquely identifies a particular row. If we reorder the rows, their indices go with them

Group By
Groups are usually used together with reductions
Counting number of rows in each group
my_dataframe.groupby(criteria).size()
Sum of every numerical column in each group
my_dataframe.groupby(criteria).sum()
Mean of every numerical column in each group
my_dataframe.groupby(criteria).mean()

Join
Use DataFrame.merge() as a general method of joining two dataframes:
Works also with series
Joins on the primary keys of the two dataframes (series)

Missing Values
Finding out number of missing values in each column
my_dataframe.isna().sum()
Removing rows
my_dataframe.dropna(axis = 0)
Removing columns
my_dataframe.dropna(axis = 1)
Filling with a value
For all missing values: my_dataframe.fillna(replacement_value)
Different value for each column: my_dataframe.fillna({'NAME': 'UNKNOWN', 'AGE': 0})

Map, Replace, Apply
Map applies a mapping to every element of the dataframe
my_dataframe.map({old1: new1, old2: new2, ...})
my_dataframe.map(function)
If we provide map using a dictionary, then any elements not in the keys will be mapped to numpy.nan
Replace applies a mapping to only elements of the dataframe that have been mentioned in the mapping
my_dataframe.replace ({old1: new1, old2: new2, ...})
Any elements not in the dictionary keys will not be changed

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction