* Cantinho Satkeys

Refresh History
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50

Autor Tópico: Machine Supervised Learning Regression in Python 3 and Math  (Lida 338 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

Machine Supervised Learning: Regression in Python 3 and Math
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.45 GB
Genre: eLearning Video | Duration: 33 lectures (4 hour, 56 mins) | Language: English

Master Regression Algorithm as it provides a base for you to build on and learn other ML algorithms

What you'll learn

    Understand when to use simple, multiple, and hierarchical regression.
    Effectively utilize regression models in your own work and be able to critically evaluate the work of others.
    Make business decisions about the best models to maximize profits while minimizing risk.
    Learn how to conduct correlation and regression.
    Understand predicted values and their role in the overall quality of a regression model.

Requirements

    Secondary school math.
    Basic programming skills in Python.

Description

Artificial Intelligence has become prevalent recently. People across different disciplines are trying to apply AI to make their tasks a lot easier. For example, economists are using AI to predict future market prices to make a profit, doctors use AI to classify whether a tumor is malignant or benign, meteorologists use AI to predict the weather, HR recruiters use AI to check the resume of applicants to verify if the applicant meets the minimum criteria for the job, etcetera. The impetus behind such ubiquitous use of AI is machine learning algorithms. For anyone who wants to learn ML algorithms but hasn't gotten their feet wet yet, you are at the right place. The rudimental algorithm that every Machine Learning enthusiast starts with is a linear regression algorithm. Therefore, we shall do the same as it provides a base for us to build on and learn other ML algorithms.

Before knowing what is linear regression, let us get ourselves accustomed to regression. Regression is a method of modeling a target value based on independent predictors. This method is mostly used for forecasting and finding out the cause and effect relationship between variables. Regression techniques mostly differ based on the number of independent variables and the type of relationship between the independent and dependent variables.

Want to learn more about regression? Don't hesitate and join us to begin the journey of learning!

Who this course is for:

    Anyone interested in learning more about regression analysis.
    Those who want to start their career in Machine Learning or Data Science.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction