* Cantinho Satkeys

Refresh History
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50

Autor Tópico: Coursera - Data Engineering with Google Cloud Professional Certificate by Google Cloud  (Lida 366 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

Coursera - Data Engineering with Google Cloud Professional Certificate by Google Cloud
Video: .mp4 (1280x720) | Audio: AAC, 44100 kHz, 2ch | Size: 2.37 Gb | Materials: PDF
Genre: eLearning Video | Duration: 11h 18m | Language: English
Advance your career in data engineering.

Google Cloud Platform Big Data and Machine Learning Fundamentals
This 2-week accelerated on-demand course introduces participants to the Big Data and Machine Learning capabilities of Google Cloud Platform (GCP). It provides a quick overview of the Google Cloud Platform and a deeper dive of the data processing capabilities.

At the end of this course, participants will be able to: * Identify the purpose and value of the key Big Data and Machine Learning products in the Google Cloud Platform * Use CloudSQL and Cloud Dataproc to migrate existing MySQL and Hadoop/Pig/Spark/Hive workloads to Google Cloud Platform * Employ BigQuery and Cloud Datalab to carry out interactive data analysis * Choose between Cloud SQL, BigTable and Datastore * Train and use a neural network using TensorFlow * Choose between different data processing products on the Google Cloud Platform Before enrolling in this course, participants should have roughly one (1) year of experience with one or more of the following: * A common query language such as SQL * Extract, transform, load activities * Data modeling * Machine learning and/or statistics * Programming in Python Google Account Notes: * Google services are currently unavailable in China.

Modernizing Data Lakes and Data Warehouses with GCP
The two key components of any data pipeline are data lakes and warehouses. This course highlights use-cases for each type of storage and dives into the available data lake and warehouse solutions on Google Cloud Platform in technical detail. Also, this course describes the role of a data engineer, the benefits of a successful data pipeline to business operations, and examines why data engineering should be done in a cloud environment. Learners will get hands-on experience with data lakes and warehouses on Google Cloud Platform using QwikLabs.

Building Batch Data Pipelines on GCP
Data pipelines typically fall under one of the Extra-Load, Extract-Load-Transform or Extract-Transform-Load paradigms. This course describes which paradigm should be used and when for batch data. Furthermore, this course covers several technologies on Google Cloud Platform for data transformation including BigQuery, executing Spark on Cloud Dataproc, pipeline graphs in Cloud Data Fusion and serverless data processing with Cloud Dataflow. Learners will get hands-on experience building data pipeline components on Google Cloud Platform using QwikLabs.

Building Resilient Streaming Analytics Systems on GCP
Processing streaming data is becoming increasingly popular as streaming enables businesses to get real-time metrics on business operations. This course covers how to build streaming data pipelines on Google Cloud Platform. Cloud Pub/Sub is described for handling incoming streaming data. The course also covers how to apply aggregations and transformations to streaming data using Cloud Dataflow, and how to store                                                                                                                                                                                                        processed records to BigQuery or Cloud Bigtable for analysis. Learners will get hands-on experience building streaming data pipeline components on Google Cloud Platform using QwikLabs.

Smart Analytics, Machine Learning, and AI on GCP
Incorporating machine learning into data pipelines increases the ability of businesses to extract insights from their data. This course covers several ways machine learning can be included in data pipelines on Google Cloud Platform depending on the level of customization required. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces AI Platform Notebooks and BigQuery Machine Learning. Also, this course covers how to productionalize machine learning solutions using Kubeflow. Learners will get hands-on experience building machine learning models on Google Cloud Platform using QwikLabs.

Preparing for the Google Cloud Professional Data Engineer Exam
From the course: "The best way to prepare for the exam is to be competent in the skills required of the job."
This course uses a top-down approach to recognize knowledge and skills already known, and to surface information and skill areas for additional preparation. You can use this course to help create your own custom preparation plan. It helps you distinguish what you know from what you don't know. And it helps you develop and practice skills required of practitioners who perform this job. The course follows the organization of the Exam Guide outline, presenting highest-level concepts, "touchstones", for you to determine whether you feel confident about your knowledge of that area and its dependent concepts, or if you want more study. You also will learn about and have the opportunity to practice key job skills, including cognitive skills such as case analysis, identifying technical watchpoints, and developing proposed solutions. These are job skills that are also exam skills. You will also test your basic abilities with Activity Tracking Challenge Labs. And you will have many sample questions similar to those on the exam, including solutions. The end of the course contains an ungraded practice exam quiz, followed by a graded practice exam quiz that simulates the exam-taking experience.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction