* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    Hoje às 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37

Autor Tópico: Causal Data Science with Directed Acyclic Graphs  (Lida 230 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117428
  • Karma: +0/-0
Causal Data Science with Directed Acyclic Graphs
« em: 16 de Abril de 2020, 18:31 »


h264, yuv420p, 1280x720 |ENGLISH, aac, 48000 Hz, 2 channels | 4h 57 mn | 2.39 GB
Created by: Paul Hünermund
Get to know the modern tools for causal inference from machine learning and AI, with many practical examples in R

What you'll learn

Causal inference in data science and machine learning
How to work with directed acylic graphs (DAG)
Newest developments in causal AI

Requirements

Basic knowledge of probability and statistcs
Basic programming skills would be an advantage

Description

This course offers an introduction into causal data science with directed acyclic graphs (DAG). DAGs combine mathematical graph theory with statistical probability concepts and provide a powerful approach to causal reasoning. Originally developed in the computer science and artificial intelligence field, they nowadays gain more and more traction also in other scientific disciplines (such as, e.g., machine learning, economics, finance, health sciences, and philosophy). DAGs allow to check the validity of causal statements based on intuitive graphical criteria, that do not require any algebra. In addition, they open up the possibility to completely automatize the causal inference task with the help of special identification algorithms. As an encompassing framework for causal thinking, DAGs are becoming an essential tool for everyone interested in data science and machine learning.

The course provides a good overview of the theoretical advances that have been made in causal data science during the last thirty year. The focus lies on practical applications of the theory and students will be put into the position to apply causal data science methods in their own work. Hands-on examples, discussed in the statistical software package R, will guide through the presented material. There are no particular prerequisites for participating. However, a good working knowledge in probability and basic programming skills are a benefit.
Who this course is for:

Data scientists
Economists
Computer Scientists
People intersted in machine learning

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction