* Cantinho Satkeys

Refresh History
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50

Autor Tópico: Imbalanced Learning - The Complete Guide (Updated)  (Lida 261 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Imbalanced Learning - The Complete Guide (Updated)
« em: 15 de Outubro de 2019, 09:11 »

Imbalanced Learning - The Complete Guide (Updated)
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 2.4 GB
Duration: 5 hours | Genre: eLearning Video | Language: English
Learn how to handle imbalanced data in Machine Learning. Data based approaches, algorithmic approaches and more!

What you'll learn

    Understand the underline causes of the Class Imbalance problem
    Why it is a major challenge in machine learning and data mining fields
    Learn the different characteristics of imbalanced datasets
    Learn the state-of-the-art techniques and algorithms
    Understand variety of data based methods such as SMOTE, ADASYN, B-SMOTE and many more!
    Apply Data-Based Techniques in practice
    Understand different algorithmic approaches such as: One Class Learning, Cost Sensitive Learning and more!
    Apply Algorithmic-Based methods in practice
    Learn how to correctly evaluate a prediction model built using imbalanced data
    Learn strategies and recommendations to help you avoid pitfalls when working with imbalanced dataset

Requirements

    Prior knowledge in machine learning/data science is necessary or at least currently enrolled in a machine learning course.

Description

This is a niche topic for students interested in data science and machine learning fields. The classical data imbalance problem is recognized as one of the major problems in the field of data mining and machine learning. Imbalanced learning focuses on how an intelligent system can learn when it is provided with unbalanced data.

There is an unprecedented amount of data available. This has caused knowledge discovery to garner attention in recent years. However, many real-world datasets are imbalanced. Learning from unbalanced data poses major challenges and is recognized as needing significant attention.

The problem with unbalanced data is the performance of learning algorithms in the presence of underrepresented data and severely skewed class distributions. Models trained on imbalanced datasets strongly favor the majority class and largely ignore the minority class. Several approaches introduced to date present both data-based and algorithmic solutions.

The specific goals of this course are:

    Help the students understand the underline causes of unbalanced data problem.

    Go over the major state-of-the-art methods and techniques that you can use to deal with imbalanced learning.

    Explain the advantages and drawback of different approaches and methods .

    Discuss the major assessment metrics for imbalanced learning to help you correctly evaluate the effectiveness of your solution.

Who this course is for:

    This course is for students and professionals who are working in the machine learning / data science area and want to increase their knowledge and skills. It is also for students who are currently taking a course in these areas. It is not for students with no background knowledge in Machine Learning.
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction