* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Dive into Calculus Vectors and Matrices  (Lida 195 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Dive into Calculus Vectors and Matrices
« em: 08 de Outubro de 2019, 12:55 »

Dive into Calculus : Vectors and Matrices
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 632 MB
Duration: 1 hours | Genre: eLearning | Language: English

Learn various topics in Calculus Vectors and Matrices

What you'll learn

    Introduction to Calculus
    Lines and Planes
    Curves and Surfaces
    Coordinates

Requirements

    No prior experience in calculus is required.
    Basic math skills

Description

This course covers matrices and vector calculus for functions of more than one variable. These mathematical tools and methods are used extensively in the physical sciences, engineering, economics and computer graphics.

Topics include vectors and matrices, parametric curves, partial derivatives, double and triple integrals, and vector calculus in 2- and 3-space.

As its name suggests, multivariable calculus is the extension of calculus to more than one variable. That is, in single variable calculus you study functions of a single independent variable.In multivariable calculus we study functions of two or more independent variables.

These functions are interesting in their own right, but they are also essential for describing the physical world.

Many things depend on more than one independent variable. Here are just a few:

    In thermodynamics pressure depends on volume and temperature.

    In electricity and magnetism, the magnetic and electric fields are functions of the three space variables (x,y,z) and one time variable t.

    In economics, functions can depend on a large number of independent variables, e.g., a manufacturer's cost might depend on the prices of 27 different commodities.

    In modeling fluid or heat flow the velocity field depends on position and time.

Single variable calculus is a highly geometric subject and multivariable calculus is the same, maybe even more so. In your calculus class you studied the graphs of functions y=f(x) and learned to relate derivatives and integrals to these graphs. In this course we will also study graphs and relate them to derivatives and integrals. One key difference is that more variables means more geometric dimensions. This makes visualization of graphs both harder and more rewarding and useful.

By the end of the course you will know how to differentiate and integrate functions of several variables. In single variable calculus the Fundamental Theorem of Calculus relates derivatives to integrals. We will see something similar in multivariable calculus.

Who this course is for:

    Anyone interested in learning Calculus
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction