* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33
  • FELISCUNHA: try65hytr  pessoal   htg6454y
    26 de Junho de 2025, 21:33
  • JPratas: try65hytr Pessoal  4tj97u<z
    26 de Junho de 2025, 02:28
  • cereal killa: Boa Tarde Pessoal E com enorme tristeza que depois de 15 anos que idealizei e abri este fórum vejo que esta na iminência de fechar portas porque ninguém tenta ajudar o pagamento do servidor, mas cada ano e sempre difícil arranjar almas caridosas que nos bom ajudando mas este ano esta complicado, mas infelizmente e como diz o j.s dia 5/07 se não houver algumas ajudas esta vez vai mesmo fechar…..e pena e triste mas tudo na vida tem fim. obrigada cereal killa
    25 de Junho de 2025, 19:40

Autor Tópico: Python Library Series The Definitive Guide to PyTorch  (Lida 300 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Python Library Series The Definitive Guide to PyTorch
« em: 07 de Setembro de 2019, 14:17 »

Python Library Series: The Definitive Guide to PyTorch
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 308 MB
Genre: eLearning | Language: English

Introducing PyTorch. This first topic in the Python Library series introduces this fast and flexible deep learning framework produced by FaceBook. Learn all about this open source machine learning framework and its uses within computer vision and natural language processing. Apart from the Python interface, PyTorch also has a C++ frontend. Be able to explain tensors, variables, Autograd, and optimizers. Know the functionality of the torch.nn PyTorch module, which exposes neural-network specific functionality.
PyTorch Advantages. Know the advantages of PyTorch in this second topic in the Python Library series. PyTorch is used frequently for deep learning and artificial intelligence applications because it is Pythonic, easy to learn, well-documented, easy to debug, able to provide data parallelism, dynamic graph supportable, and able to export models in the Standard Open Neural Network Exchange Format (ONNX).
PyTorch Tensors. Create CPU and GPU tensors in this third topic in the Python Library series. A scalar is zero-dimensional, a vector is one-dimensional, a matrix is two-dimensional, and a tensor is three or more dimensions. PyTorch tensors are similar to numpy arrays with the additional features that tensors can be used on a GPU to accelerate computing.
PyTorch Autograd. Install and then apply automatic differentiation using autograd (automatic gradient) in this fourth topic in the Python Library series.
PyTorch vs. Tensorflow. Contrast PyTorch with TensorFlow in areas of functionality, performance, debugging, and visualization in this fifth topic in the Python Library series. PyTorch is a deep learning framework based on Torch. Tensorflow is an open source deep learning framework based on Theano. Tensorflow defines a computational graph statically before a model can run. PyTorch is much more dynamic with computational graphs than Tensorflow.
PyTorch vs. Keras. Contrast PyTorch with Keras in areas of functionality, performance, cross-platform, debugging, and visualization in this sixth topic in the Python Library series. Keras is a high-level application programming interface that sits on top of other deep learning frameworks such as Tensorflow.
PyTorch Linear Regression. Perform linear regression in this seventh topic in the Python Library series. Linear Regression is an algorithm that finds a linear relationship between a dependent variable and an independent variable. It is a statistical method that allows us to determine the relationship between two continuous variables.
   

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction