* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Machine Learning Series The XGBoost Algorithm in Python  (Lida 165 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117301
  • Karma: +0/-0
Machine Learning Series The XGBoost Algorithm in Python
« em: 19 de Agosto de 2019, 09:17 »

Machine Learning Series: The XGBoost Algorithm in Python
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 186 MB
Genre: eLearning | Language: English

Introducing XGBoost. This first topic in the XGBoost (eXtreme Gradient Boosting) Algorithm in Python series introduces this very important machine learning algorithm. Gradient boosting is a machine learning technique for regression and classification problems. Learn about the reasons for using XGBoost, including accuracy, speed, and scale. Understand ensemble modeling and how it can improve the overall performance of a machine learning model. Apply the concepts of bagging and boosting, and learn about AdaBoost and Gradient boosting.
XGBoost Benefits. This second topic in the XGBoost Algorithm in Python series covers where XGBoost works well. XGBoost guarantees regularization (which prevents the model from overfitting), supports parallel processing, provides a built-in capacity for handling missing values, and excels at tree pruning and cross validation.
Installing XGBoost. This third topic in the XGBoost Algorithm in Python series covers how to install the XGBoost library. It is recommended to be using Python 64 bit. Become proficient in installing Anaconda and the XGBoost library on Windows, Linux, and Mac OS.
XGBoost Model Implementation in Python. This fourth topic in the XGBoost Algorithm in Python series covers how to implement the various XGBoost linear and tree learning models in Python. Practice applying the XGBoost models using a medical data set.
XGBoost Parameter Tuning in Python. This fifth topic in the XGBoost Algorithm in Python series covers how to tune the various parameters that exist in Python. Parameter tuning is the art in machine learning. Follow along and practice applying the three categories of parameter tuning: Tree Parameters, Boosting Parameters, and Other Parameters. Become proficient in a number of parameters including max_depth, min_samples_leaf, and max_features,
XGBoost Model Evaluation Method in Python. This sixth topic in the XGBoost Algorithm in Python series shows you how to evaluate an XGBoost model. Follow along and practice applying the two most important techniques of Train Test Split and Cross Validation.
XGBoost Prediction in Python. This seventh topic in the XGBoost Algorithm in Python series shows you how to perform predictions using the XGBoost algorithm.
 

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction