* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    Hoje às 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Master Deep Learning with TensorFlow 2.0 in Python  (Lida 294 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117301
  • Karma: +0/-0
Master Deep Learning with TensorFlow 2.0 in Python
« em: 07 de Agosto de 2019, 18:56 »

Master Deep Learning with TensorFlow 2.0 in Python
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 5 Hours | 2.17 GB
Genre: eLearning | Language: English

Data scientists, machine learning engineers, and AI researchers all have their own skillsets. But what special quality do they have in common?

They are all masters of deep learning.

We often hear about AI, or self-driving cars, or algorithmic magic at Google, Facebook, and Amazon. But it is not magic - it is deep learning. And more specifically, it is usually deep neural networks - the single algorithm that rules them all.

In this course, we'll teach you to master Deep Learning. We start with the basics and take you step by step toward building your very first (or second, or third...) deep learning algorithm; we program everything in Python and explain each line of code. We do this early on to give you the confidence to progress to the more complex topics we cover.

All sophisticated concepts we teach are explained intuitively. You'll get fully acquainted with TensorFlow and NumPy, two tools that are essential for creating and understanding Deep Learning algorithms. You'll explore layers, their building blocks, and activations - sigmoid, tanh, ReLu, softmax, and more.

You'll understand the backpropagation process, intuitively and mathematically. You'll be able to spot and prevent overfitting, one of the biggest issues in machine and deep learning. You'll master state-of-the-art initialization methods. Don't know what initialization is? We explain that, too. you'll learn how to build deep neural networks using real data, implemented by real companies in the real world-templates included! Also, you will create your very own deep learning algorithm.

Take the first step toward a satisfying data science career and becoming a Master of Deep Learning.

All the code files are placed at
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.
         

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction