* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    Hoje às 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    08 de Outubro de 2025, 11:44
  • joca34: ola amigos boas noite alguem este cd Disco Festa Portuguesa (Ao Vivo)
    07 de Outubro de 2025, 22:45
  • pxsofficial: alguem ainda tem o Mega Pack de Filmes Infantis Dublados PT-PT
    07 de Outubro de 2025, 21:22
  • FELISCUNHA: ghyt74   49E09B4F  Votos de um santo domingo para todo o auditório  4tj97u<z
    05 de Outubro de 2025, 11:03
  • j.s.: um santo domingo  49E09B4F
    05 de Outubro de 2025, 10:52
  • j.s.: ghyt74 a todos  49E09B4F
    05 de Outubro de 2025, 10:52
  • gitzbeka: tivi mate
    04 de Outubro de 2025, 18:21
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    03 de Outubro de 2025, 11:42
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 yu7gh8
    03 de Outubro de 2025, 03:07

Autor Tópico: Predictive maintenance meets predictive analytics  (Lida 408 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126013
  • Karma: +0/-0
Predictive maintenance meets predictive analytics
« em: 13 de Maio de 2019, 03:02 »

Predictive maintenance meets predictive analytics
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 50M | 385 MB
Genre: eLearning | Language: English

The mix of cheap sensors, fast networks, and distributed computing-the recipe for the Internet of Things-is gaining increasing attention in the manufacturing industry, where maintenance must be conducted for both individual assets of interest and complex manufacturing processes. In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry.Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications.Topics include:What data must be gathered for effective predictive maintenance applicationsHow to formulate a predictive maintenance problem into three different machine-learning models (regression, binary classification, and multiclass classification)The step-by-step procedure for data input, data preprocessing, data labeling, and feature engineering from the raw data to prepare the training/testing dataHow various types of learning models can be trained and compared using different algorithms
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction