* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    10 de Janeiro de 2026, 12:21
  • asakzt: Managing database versions with Liquibase and Spring Boot
    10 de Janeiro de 2026, 11:35
  • tita: Musica Box Pop
    09 de Janeiro de 2026, 12:18
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    08 de Janeiro de 2026, 11:01
  • j.s.: try65hytr a todos  49E09B4F
    07 de Janeiro de 2026, 20:37
  • TWT: Interaction Design Specialization
    07 de Janeiro de 2026, 07:38
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    05 de Janeiro de 2026, 10:33
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    03 de Janeiro de 2026, 12:26
  • JPratas: try65hytr Pessoal Continuação de
    02 de Janeiro de 2026, 19:42
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18
  • j.s.: dgtgtr a todos  49E09B4F
    31 de Dezembro de 2025, 17:17
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano de 2026  4tj97u<z
    31 de Dezembro de 2025, 11:55
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 Continuação de Boas Festas vx4s5
    31 de Dezembro de 2025, 06:23
  • m1957: Um excelente ano de 2025 muito próspero!
    30 de Dezembro de 2025, 23:35

Autor Tópico: Machine Learning Series Logistic Regression  (Lida 664 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Machine Learning Series Logistic Regression
« em: 06 de Maio de 2019, 12:41 »

Machine Learning Series: Logistic Regression
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 192 MB
Genre: eLearning | Language: English

Dhiraj, a data scientist and machine learning evangelist, continues his teaching of machine learning algorithms by going into the logistic regression algorithm in this video series. Learn all about this powerful machine learning classification algorithm in this video series containing these 8 topics:

Introducing Logistic Regression. This first video in the logistic regression series introduces this powerful classification algorithm. The logistic regression algorithm is used when the dependent variable or target variable is categorical. Simple Logistic Regression and Multinomial Logistic Regression are explained. Learn about the five important assumptions of logistic regression. Learn about the Sigmoid function.
Contrasting Logistic Regression with Linear Regression. This second video in the logistic regression series compares logistic regression with linear regression in terms of their purpose, use cases, equations, error minimizations, and assumptions.
Preprocessing Data in Logistic Regression. This third video in the logistic regression series covers the four ways of preprocessing data before performing logistic regression: missing data handling, categorical data handling, splitting into train and test set, and feature scaling. This video contains a hands-on component so you can follow along and preprocess the data set using all four approaches.
Using Seaborn for Data Visualization. This fourth video in the logistic regression series explains how to perform data visualization using Seaborn, which is a Python data visualization library based on matDescriptionlib. Seaborn provides the high-level interface to create statistical graphs. This video contains a hands-on component so you can follow along and create data visualization graphs.
Creating a Logistic Model. This fifth video in the logistic regression series explains how to create a logistic model using the Titantic dataset. The hands-on part of this video uses sklearn's LogisticRegression class.
Predicting Output from the Logistic Model. This sixth video in the logistic regression series explains how to predict the output from a logistic model, using the scikit-learn's predict() function.
Checking the Accuracy of a Logistic Model. This seventh video in the logistic regression series explains how to check the accuracy of a logistic model.
Using the Confusion Matrix to Determine Model Performance. This eighth video in the logistic regression series explains how to gauge the performance of a logistic model using the confusion matrix.
 

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction