* Cantinho Satkeys

Refresh History
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36

Autor Tópico: Building LLM-Powered Recommendation Systems  (Lida 8 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online WAREZBLOG

  • Moderador Global
  • ***
  • Mensagens: 4722
  • Karma: +0/-0
Building LLM-Powered Recommendation Systems
« em: 08 de Fevereiro de 2026, 13:33 »

Free Download Building LLM-Powered Recommendation Systems
Released 2/2026
With Rishabh Misra
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Skill Level: Intermediate | Genre: eLearning | Language: English + subtitle | Duration: 2h 18m | Size: 252 MB

Learn how to design, build, evaluate, and deploy production-ready recommender systems that leverage the power of GenAI for enhanced personalization, quality, and user trust.
Course details
Get a technically grounded overview of how to start building the next generation of intelligent recommender systems. Moving beyond traditional algorithms, this course shows you how to immediately enhance existing systems by applying AI-powered techniques for embedding generation, semantic reranking, cold start mitigation, and more. Instructor Rishabha Misra outlines the essentials of designing sophisticated, GenAI-native architectures that enable dynamic experiences like conversational search and multimodal recommendations. An ideal fit for software engineers, data scientists, AI and ML engineers, and technical product managers, this course focuses on robust evaluation, teaching you how to measure for quality and fairness and ensure factual accuracy through patterns like retrieval-augmented generation (RAG). By the end of this course, you'll be prepared to design, evaluate, and operationalize effective and responsible GenAI recommender systems in a production environment.
Skills covered
Large Language Models (LLM), Recommender Systems
Homepage
Código: [Seleccione]
https://www.linkedin.com/learning/building-llm-powered-recommendation-systems
Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
No Password  - Links are Interchangeable