* Cantinho Satkeys

Refresh History
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    Hoje às 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0
    28 de Março de 2025, 03:20
  • cereal killa: try65hytr pessoal so passei para desejar uma boa noite  wwd46l0'
    27 de Março de 2025, 20:44
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Março de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Março de 2025, 20:40
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    22 de Março de 2025, 11:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    21 de Março de 2025, 03:27
  • j.s.: try65hytr a todos  49E09B4F
    20 de Março de 2025, 18:41
  • JPratas: dgtgtr Pessoal  4tj97u<z classic k7y8j0
    20 de Março de 2025, 18:22
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Março de 2025, 16:30
  • estorula: bitrecover
    18 de Março de 2025, 22:37
  • estorula: BitRecover PST Converter Wizard 10.6.2 Portable
    18 de Março de 2025, 22:33
  • j.s.: try65hytr a todos
    18 de Março de 2025, 21:02
  • Subwoofer21: obg
    17 de Março de 2025, 20:17
  • j.s.: dgtgtr a todos  49E09B4F
    16 de Março de 2025, 16:43
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    16 de Março de 2025, 10:10
  • cereal killa: ghyt74 e bom domingo  classic
    16 de Março de 2025, 08:53
  • FELISCUNHA: try65hytr   49E09B4F
    13 de Março de 2025, 21:08
  • cereal killa: try65hytr pessoal  classic
    13 de Março de 2025, 19:42

Autor Tópico: Graph Learning for Fashion Compatibility Modeling, 2nd Edition  (Lida 90 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 31302
  • Karma: +0/-0
Graph Learning for Fashion Compatibility Modeling, 2nd Edition
« em: 13 de Novembro de 2022, 15:32 »


English | 2022 | ISBN: 3031188160 | 193 Pages | PDF EPUB (True) | 20 MB


This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items. This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items. To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning. Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.

DOWNLOAD

katfile.com:
Citar
https://katfile.com/vlxu9k02jbfs/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z.html

ddownload.com:
Citar
https://ddownload.com/rjiqe4uxs0vm/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z

rapidgator.net:
Citar
https://rapidgator.net/file/60b75bd75db3acc81634163593052e01/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z.html