* Cantinho Satkeys

Refresh History
  • okapa:
    Hoje às 19:01
  • sacana10: A todos um feliz natal
    Hoje às 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    Hoje às 15:46
  • bruno mirandela: deso a todos um feliz natal
    Hoje às 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    Hoje às 10:15
  • tgh12: mikrotik
    Hoje às 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    Hoje às 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    Hoje às 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    Hoje às 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Applied Machine Learning With Python (2022)  (Lida 197 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Applied Machine Learning With Python (2022)
« em: 04 de Outubro de 2022, 10:15 »


Published 10/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 17 lectures (3h 29m) | Size: 2.9 GB
Machine Learning with Python and MS Excel

What you'll learn
Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Clustering: K-Means, Hierarchical Clustering
Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Requirements
Basic knowledge of computer programming
Description
Interested in the field of Machine Learning? Then this course is for you! This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theories, algorithms, and coding libraries in a simple way. We will walk you step-by-step into the World of Machine Learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.
This course is fun and exciting, but at the same time, we dive deep into Machine Learning. It is structured the following way
Part 1 - Data Preprocessing
Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Part 4 - Clustering: K-Means, Hierarchical Clustering
Part 5 - Association Rule Learning: Apriori, Eclat
Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
Moreover, the course is packed with practical exercises that are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.
And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.
Important updates (June 2020)
CODES ALL UP TO DATE
DEEP LEARNING CODED IN TENSORFLOW 2.0
TOP GRADIENT BOOSTING MODELS INCLUDING XGBOOST AND EVEN CATBOOST!
Who this course is for
Just some high school mathematics level and Working professionals also

Download link

rapidgator.net:
Citar
https://rapidgator.net/file/9d82558bef5f29d0498b49d05f70a769/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar.html
https://rapidgator.net/file/9e2a45d89a830925c543f2117f7f7df0/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar.html
https://rapidgator.net/file/a9bc2faf43e0fca745c425c28735c141/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/93c791b28E0b3d9d/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar
https://uploadgig.com/file/download/a5024c2100e02208/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar
https://uploadgig.com/file/download/acc3673D3985cbda/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar

nitroflare.com:
Citar
https://nitroflare.com/view/6DBFC5F558AAF21/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar
https://nitroflare.com/view/76174F073788D76/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar
https://nitroflare.com/view/29ECFED03E70CB9/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar

1dl.net:
Citar
https://1dl.net/l98w5wz0z17e/lkodv.Applied.Machine.Learning.With.Python.2022.part1.rar.html
https://1dl.net/pdmhtu1wngcb/lkodv.Applied.Machine.Learning.With.Python.2022.part2.rar.html
https://1dl.net/12b3omstvdkg/lkodv.Applied.Machine.Learning.With.Python.2022.part3.rar.html