* Cantinho Satkeys

Refresh History
  • Gerard: j'espère que tous sont en train d'être bem
    12 de Setembro de 2025, 13:28
  • Gerard: Boas tardes
    12 de Setembro de 2025, 13:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    12 de Setembro de 2025, 11:51
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    12 de Setembro de 2025, 03:29
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52

Autor Tópico: Doing more with Python Numpy  (Lida 95 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Doing more with Python Numpy
« em: 22 de Junho de 2021, 16:38 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 33 lectures (4h 17m) | Size: 1.2 GB
Tap full potential of Numpy Library by putting Arrays, Numpy's functions and Broadcasting to work

What you'll learn:
Develop understanding of how Arrays work and what advantages they offer over other Data Structures
Use Arrays as Data containers for common data operations
Compare time performance of your process codes versus a suitable Numpy function
In-depth understanding to use numpy's where() and select() functions to replace conventionally used methods
Apply Array Broadcasting in your line of work to replace Nested For loops and Cross-join operations

Requirements
Basic knowledge of Python (including Data Types and Structures, Control Flow, Functions, etc.)
Basic knowledge of Pandas

Description
The course covers three key areas in Numpy:

Numpy Arrays as Data Structures - Developing an in-depth understanding along the lines of:

Intuition of Arrays as Data Containers

Visualizing 2D/3D and higher dimensional Arrays

Array Indexing and Slicing - 2D/3D Arrays

Performing basic/advanced operations using Numpy Arrays

Useful Numpy Functions - Basic to Advanced usage of the below Numpy functions and how they perform compared to their counterpart methods

numpy where() function

Comparison with Apply + Lambda

Performance on Large DataFrames

Varied uses in new variable creation

numpy select() function

Apply conditions on single and multiple numeric variables

Apply conditions on categorical variable

Array Broadcasting - Developing an intuition of "How Arrays with dissimilar shapes interact" and how to put it to use

Intuition of Broadcasting concept on 2D/3D Arrays

Under what scenarios can we use Broadcasting to replace some of the computationally expensive methods like For loops and Cross-join Operations, etc. especially when working on a large Datasets

The course also covers the topic - "How to time your codes/processes", which will equip you to:

Track time taken by any code block (using Two different methods) and also apply to your own processes/codes

Prepare for the upcoming Chapter "Useful Numpy Functions", where we not only compare performance of Numpy functions with other conventionally used methods but also monitor how they perform on large Datasets

Who this course is for
Anyone who wants to learn in more depth, about Numpy Arrays and Array Broadcasting and put them to practical use


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction