* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Cleaning Data In R with Tidyverse and Data.table  (Lida 89 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115575
  • Karma: +0/-0
Cleaning Data In R with Tidyverse and Data.table
« em: 11 de Novembro de 2020, 13:56 »

Cleaning Data In R with Tidyverse and Data.table
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.64 GB
Genre: eLearning Video | Duration: 37 lectures (4 hour, 4 mins) | Language: English

 Get your data ready for analysis with R packages tidyverse, dplyr, data.table, tidyr and more

What you'll learn

    Convert raw and dirty data into clean data
    Understand how clean data looks and how to achieve it
    Use the R Tidyverse packages to clean data
    Handle missing values in R
    Detect outliers
    Filter and query tables
    Select a proper class for your data
    Clean various classes of data (numeric, string, categorical, integer, ...)

Requirements

    Just basic R skills are required for this course
    R and RStudio

Description

Welcome to this course on Data Cleaning in R with Tidyverse, Dplyr, Data.table, Tidyr and many more packages!

You may already know this problem: Your data is not properly cleaned before the analysis so the results are corrupted or you can not even perform the analysis.

To be brief: you can not escape the initial cleaning part of data science. No matter which data you use or which analysis you want to perform, data cleaning will be a part of the process. Therefore it is a wise decision to invest your time to properly learn how to do this.

Now as you can imagine, there are many things that can go wrong in raw data. Therefore a wide array of tools and functions is required to tackle all these issues. As always in data science, R has a solution ready for any scenario that might arise. Outlier detection, missing data imputation, column splits and unions, character manipulations, class conversions and much more - all of this is available in R.

And on top of that there are several ways in how you can do all of these things. That means you always have an alternative if you prefer that one. No matter if you like simple tools or complex machine learning algorithms to clean your data, R has it.

Now we do understand that it is overwhelming to identify the right R tools and to use them effectively when you just start out. But that is where we will help you. In this course you will see which R tools are the most efficient ones and how you can use them.

You will learn about the tidyverse package system - a collection of packages which works together as a team to produce clean data. This system helps you in the whole data cleaning process starting from data import right until the data query process. It is a very popular toolbox which is absolutely worth it.

To filter and query datasets you will use tools like data.table, tibble and dplyr.

You will learn how to identify outliers and how to replace missing data. We even use machine learning algorithms to do these things.

And to make sure that you can use and implement these tools in your daily work there is a data cleaning project at the end of the course. In this project you get an assignment which you can solve on your own, based on the material you learned in the course. So you have plenty of opportunity to test, train and refine your data cleaning skills.

As always you get the R scripts as text to copy into your RStudio instance. And on course completion you will get a course certificate from Udemy.

R-Tutorials Team

 
Who this course is for:

    Anybody working with R will benefit from this course since data cleaning is an integral part of any form of analysis

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction