* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Master Complete Statistics For Computer Science - I  (Lida 256 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Master Complete Statistics For Computer Science - I
« em: 09 de Agosto de 2020, 10:57 »

Master Complete Statistics For Computer Science - I
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 6.46 GB
Genre: eLearning Video | Duration: 156 lectures (21 hour, 20 mins) | Language: English
 Course In Probability & Statistics Important For Machine Learning, Artificial Intelligence, Data Science, Neural Network

What you'll learn

    Random Variables
    Discrete Random Variables and its Probability Mass Function
    Continuous Random Variables and its Probability Density Function
    Cumulative Distribution Function and its properties and application
    Special Distribution
    Two - Dimensional Random Variables
    Marginal Probability Distribution
    Conditional Probability Distribution
    Independent Random Variables
    Function of One Random Variable
    One Function of Two Random Variables
    Two Functions of Two Random Variables
    Statistical Averages
    Measures of Central Tendency (Mean, Median, Mode, Geometric Mean and Harmonic Mean)
    Mathematical Expectations and Moments
    Measures of Dispersion (Quartile Deviation, Mean Deviation, Standard Deviation and Variance)
    Skewness and Kurtosis
    Expected Values of Two-Dimensional Random Variables
    Linear Correlation
    Correlation Coefficient and its properties
    Rank Correlation Coefficient
    Linear Regression
    Equations of the Lines of Regression
    Standard Error of Estimate of Y on X and of X on Y
    Characteristic Function and Moment Generating Function
    Bounds on Probabilities

Requirements

    Knowledge of Applied Probability
    Knowledge of Calculus

Description

In today's engineering curriculum, topics on probability and statistics play a major role, as the statistical methods are very helpful in analyzing the data and interpreting the results.

When an aspiring engineering student takes up a project or research work, statistical methods become very handy.

Hence, the use of a well-structured course on probability and statistics in the curriculum will help students understand the concept in depth, in addition to preparing for examinations such as for regular courses or entry-level exams for postgraduate courses.

In order to cater the needs of the engineering students, content of this course, are well designed. In this course, all the sections are well organized and presented in an order as the contents progress from basics to higher level of statistics.

As a result, this course is, in fact, student friendly, as I have tried to explain all the concepts with suitable examples before solving problems.

This 150+ lecture course includes video explanations of everything from Random Variables, Probability Distribution, Statistical Averages, Correlation, Regression, Characteristic Function, Moment Generating Function and Bounds on Probability, and it includes more than 90+ examples (with detailed solutions) to help you test your understanding along the way. "Master Complete Statistics For Computer Science - I" is organized into the following sections:

    Introduction

    Discrete Random Variables

    Continuous Random Variables

    Cumulative Distribution Function

    Special Distribution

    Two - Dimensional Random Variables

    Random Vectors

    Function of One Random Variable

    One Function of Two Random Variables

    Two Functions of Two Random Variables

    Measures of Central Tendency

    Mathematical Expectations and Moments

    Measures of Dispersion

    Skewness and Kurtosis

    Statistical Averages - Solved Examples

    Expected Values of a Two-Dimensional Random Variables

    Linear Correlation

    Correlation Coefficient

    Properties of Correlation Coefficient

    Rank Correlation Coefficient

    Linear Regression

    Equations of the Lines of Regression

    Standard Error of Estimate of Y on X and of X on Y

    Characteristic Function and Moment Generating Function

    Bounds on Probabilities

Who this course is for:

    Current Probability and Statistics students
    Students of Machine Learning, Artificial Intelligence, Data Science, Computer Science, Electrical Engineering , as Statistics is the prerequisite course to Machine Learning, Data Science, Computer Science and Electrical Engineering
    Anyone who wants to study Statistics for fun after being away from                                                                                                                                                                                                       school for a while.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction