* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Machine Supervised Learning Regression in Python 3 and Math  (Lida 260 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126248
  • Karma: +0/-0

Machine Supervised Learning: Regression in Python 3 and Math
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.45 GB
Genre: eLearning Video | Duration: 33 lectures (4 hour, 56 mins) | Language: English

Master Regression Algorithm as it provides a base for you to build on and learn other ML algorithms

What you'll learn

    Understand when to use simple, multiple, and hierarchical regression.
    Effectively utilize regression models in your own work and be able to critically evaluate the work of others.
    Make business decisions about the best models to maximize profits while minimizing risk.
    Learn how to conduct correlation and regression.
    Understand predicted values and their role in the overall quality of a regression model.

Requirements

    Secondary school math.
    Basic programming skills in Python.

Description

Artificial Intelligence has become prevalent recently. People across different disciplines are trying to apply AI to make their tasks a lot easier. For example, economists are using AI to predict future market prices to make a profit, doctors use AI to classify whether a tumor is malignant or benign, meteorologists use AI to predict the weather, HR recruiters use AI to check the resume of applicants to verify if the applicant meets the minimum criteria for the job, etcetera. The impetus behind such ubiquitous use of AI is machine learning algorithms. For anyone who wants to learn ML algorithms but hasn't gotten their feet wet yet, you are at the right place. The rudimental algorithm that every Machine Learning enthusiast starts with is a linear regression algorithm. Therefore, we shall do the same as it provides a base for us to build on and learn other ML algorithms.

Before knowing what is linear regression, let us get ourselves accustomed to regression. Regression is a method of modeling a target value based on independent predictors. This method is mostly used for forecasting and finding out the cause and effect relationship between variables. Regression techniques mostly differ based on the number of independent variables and the type of relationship between the independent and dependent variables.

Want to learn more about regression? Don't hesitate and join us to begin the journey of learning!

Who this course is for:

    Anyone interested in learning more about regression analysis.
    Those who want to start their career in Machine Learning or Data Science.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction