* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr  e continuação de boas festas  :smiles_natal:
    26 de Dezembro de 2025, 17:56
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29

Autor Tópico: Practical Machine Learning by Example in Python  (Lida 347 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Practical Machine Learning by Example in Python
« em: 20 de Abril de 2020, 08:30 »


MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 105 lectures (7 hour, 35 mins) | Size: 2.57 GB
Learn modern machine learning, deep learning, and data science skills

What you'll learn

Develop complete machine learning/deep learning solutions in Python
Write and test Python code interactively using Jupyter notebooks
Build, train, and test deep learning models using the popular Tensorflow 2 and Keras APIs
Neural network fundamentals by building models from the ground up using only basic Python
Manipulate multidimensional data using NumPy
Load and transform structured data using Pandas
Build high quality, eye catching visualizations with Matplotlib
Reduce training time using free Google Colab GPU instances in the cloud
Recognize images using Convolutional Neural Networks (CNNs)
Make recommendations using collaborative filtering
Detect fraud using autoencoders
Improve model accuracy and eliminate overfitting

Requirements

Basic software development skills
Basic high school math, such as trigonometry and algebra

Description

Are you a developer interested in becoming a machine learning engineer or data scientist? Do you want to be proficient in the rapidly growing field of artificial intelligence? One of the fastest and easiest ways to learn these skills is by working through practical hands-on examples.

LinkedIn released it's annual "Emerging Jobs" list, which ranks the fastest growing job categories. The top role is Artificial Intelligence Specialist, which is any role related to machine learning. Hiring for this role has grown 74% in the past few years!

In this course, you will work through several practical, machine learning examples, such as image recognition, sentiment analysis, fraud detection, and more. In the process, you will learn how to use modern frameworks, such as Tensorflow 2/Keras, NumPy, Pandas, and Matplotlib. You will also learn how use powerful and free development environments in the cloud, like Google Colab.

Each example is independent and follows a consistent structure, so you can work through examples in any order. In each example, you will learn:

The nature of the problem

How to analyze and visualize data

How to choose a suitable model

How to prepare data for training and testing

How to build, test, and improve a machine learning model

Answers to common questions

What to do next

Of course, there are some required foundations you will need for each example. Foundation sections are presented as needed. You can learn what interests you, in the order you want to learn it, on your own schedule.

January 2020 updates:

New mathematics and machine learning foundation section including

Logistic regression, loss and cost functions, gradient descent, and backpropagation

All examples updated to use Tensorflow 2 (Tensorflow 1 examples are available also)

Jupyter note introduction

Python quick start

Basic linear algebra

March 2020 updates:

A sentiment and natural language processing section

This includes a modern BERT classification model with surprisingly high accuracy

Why choose me as your instructor?

Practical experience. I actively develop real world machine learning systems. I bring that experience to each course.

Teaching experience. I've been writing and teaching for over 20 years.

Commitment to quality. I am constantly updating my courses with improvements and new material.

Ongoing support. Ask me anything! I'm here to help. I answer every question or concern promptly.

Who this course is for:

Anyone interesting in developing machine learning and deep learning skills

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction