* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Decision Trees, Random Forests, AdaBoost and XGBoost in Python  (Lida 289 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Decision Trees, Random Forests, AdaBoost and XGBoost in Python
« em: 21 de Setembro de 2019, 11:18 »

Decision Trees, Random Forests, AdaBoost and XGBoost in Python
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 5 Hours | 2.45 GB
Genre: eLearning | Language: English

You're looking for a complete decision tree course that teaches you everything you need to create a Decision tree/Random Forest/XGBoost model in Python, right? You've found the right Decision Tree- and tree-based advanced techniques course!

If you are a business manager, executive, or student and want to learn and apply Machine Learning to real-world business problems, this course will give you a solid base for that by teaching you some advanced machine learning techniques: Decision Trees, Random Forests, Bagging, AdaBoost, and XGBoost.

This course covers all the steps you should take while solving a business problem through Decision Trees. Most courses only focus on teaching you how to run an analysis, but we believe that what happens before and after running analyses is even more important: before running an analysis, it is very important that you have the right data and do some pre-processing on it. And after running an analysis, you should be able to judge how good your model is and interpret the results so it actually helps your business.

The course is taught by Abhishek and Pukhraj. As managers in the Global Analytics Consulting firm, we have helped businesses solve their business problems using Machine Learning techniques and we have used our experience to include practical aspects of data analysis in this course. We are also the creators of some of the most popular online courses-with over 150,000 enrollments.

Teaching our students is our job and we are committed to it. If you have any questions about the course content, practice sheet, or anything related to any topic, you can always post a question in the course or send us a direct message. With each lecture, there are class notes attached for you to follow along. You can also take quizzes to check your understanding of concepts. Each section contains a practice assignment for you to implement what you've learned practically. This course teaches you all the steps involved in creating Decision Tree-based models (some of the most popular Machine Learning models) to solve business problems.

All the code and supporting files for this course are available at -
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.
         

               
 
Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction