* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    16 de Outubro de 2024, 01:41

Autor Tópico: Udemy - Data Processing with Python  (Lida 230 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115290
  • Karma: +0/-0
Udemy - Data Processing with Python
« em: 25 de Junho de 2019, 08:19 »

Udemy - Data Processing with Python
WEBRip | English | MP4 | 1280 x 720 | AVC ~634 Kbps | 30 fps
AAC | 59.2 Kbps | 44.1 KHz | 2 channels | ~3.5 hours | 896 MB
Genre: Video Tutorial
Learn how to use Python and Pandas for cleaning and reorganizing huge amounts of data.

Data scientists spend only 20 percent of their time on building machine learning algorithms and 80 percent of their time finding, cleaning, and reorganizing huge amounts of data. That mostly happen because many use graphical tools such as Excel to process their data. However, if you use a programming language such as Python you can drastically reduce the time it takes for processing your data and make them ready for use in your project. This course will show how Python can be used to manage, clean, and organize huge amounts of data.

This course assumes you have basic knowledge of variables, functions, for loops, and conditionals. In the course you will be given access to a million records of raw historical weather data and you will use Python in every single step to deal with that dataset. That includes learning how to use Python to batch download and extract the data files, load thousands of files in Python via pandas, cleaning the data, concatenating and joining data from different sources, converting between fields, aggregating, conditioning, and many more data processing operations. On top of that, you will also learn how to calculate statistics and visualize the final data. The course also covers a series of exercises where you will be given some sample data then practice what you learned by cleaning and reorganizing those data using Python.

Who this course is for:
Those who come from any technology field that deals with any kind of data.
Those who want to leverage the power of the Python programming language for handling data.
Those who need to learn Python basics and want to quickly advance their skills by learning how to perform data cleaning, analysis and visualization with Python - all in one single course.
Those who want to switch from programming languages such as Java, C, R, Matlab, etc. to Python.

What you'll learn
Build 10 advanced Python scripts which together make up a data analysis and visualization program.
Solve six exercises related to processing, analyzing and visualizing US income data with Python.
Learn the fundamental blocks of the Python programming language such as variables, datatypes, loops, conditionals, functions and more.
Use Python to batch download files from FTP sites, extract, rename and store remote files locally.
Import data into Python for analysis and visualization from various sources such as CSV and delimited TXT files.
Keep the data organized inside Python in easily manageable pandas dataframes.
Merge large datasets taken from various data file formats.
Create pivot tables in Python out of large datasets.
Perform various operations among data columns and rows.
Query data from Python pandas dataframes.
Export data from Python into various formats such as TXT, CSV, Excel, HTML and more.
Use Python to perform various visualizations such as time series, Descriptions, heatmaps, and more.
Create KML Google Earth files out of CSV files.

        General
Complete name                            : 3. Exporting data from Python to files.mp4
Format                                   : MPEG-4
Format profile                           : Base Media
Codec ID                                 : isom (isom/avc1/mp42)
File size                                : 21.1 MiB
Duration                                 : 4 min 14 s
Overall bit rate mode                    : Variable
Overall bit rate                         : 695 kb/s
Encoded date                             : UTC 2015-07-24 08:53:57
Tagged date                              : UTC 2015-07-24 08:53:57

Video
ID                                       : 1
Format                                   : AVC
Format/Info                              : Advanced Video Codec
Format profile                           : Baseline@L3.1
Format settings                          : 3 Ref Frames
Format settings, CABAC                   : No
Format settings, RefFrames               : 3 frames
Format settings, GOP                     : M=1, N=50
Codec ID                                 : avc1
Codec ID/Info                            : Advanced Video Coding
Duration                                 : 4 min 14 s
Bit rate                                 : 634 kb/s
Maximum bit rate                         : 4 809 kb/s
Width                                    : 1 280 pixels
Height                                   : 720 pixels
Display aspect ratio                     : 16:9
Frame rate mode                          : Constant
Frame rate                               : 30.000 FPS
Color space                              : YUV
Chroma subsampling                       : 4:2:0
Bit depth                                : 8 bits
Scan type                                : Progressive
Bits/(Pixel*Frame)                       : 0.023
Stream size                              : 19.2 MiB (91%)
Writing library                          : Zencoder Video Encoding System
Encoded date                             : UTC 2015-07-24 08:53:37
Tagged date                              : UTC 2015-07-24 08:53:57

Audio
ID                                       : 2
Format                                   : AAC
Format/Info                              : Advanced Audio Codec
Format profile                           : LC
Codec ID                                 : mp4a-40-2
Duration                                 : 4 min 14 s
Bit rate mode                            : Variable
Bit rate                                 : 59.2 kb/s
Maximum bit rate                         : 65.0 kb/s
Channel(s)                               : 2 channels
Channel positions                        : Front: L R
Sampling rate                            : 44.1 kHz
Frame rate                               : 43.066 FPS (1024 SPF)
Compression mode                         : Lossy
Stream size                              : 1.79 MiB (9%)
Encoded date                             : UTC 2015-07-24 08:53:37
Tagged date                              : UTC 2015-07-24 08:53:57   

Screenshots
   




Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction