* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr  e continuação de boas festas  :smiles_natal:
    26 de Dezembro de 2025, 17:56
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29

Autor Tópico: Machine Learning with R Series K Nearest Neighbor (KNN), Linear Regression, and Text Mining  (Lida 338 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

Machine Learning with R Series: K Nearest Neighbor (KNN), Linear Regression, and Text Mining
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1.5 Hours | 339 MB
Genre: eLearning | Language: English

Follow along with machine learning expert Zanis Khan and master a number of machine learning algorithms using R, including K Nearest Neighbor (K-NN), Linear Regression, and Text Mining in this video series covering these five topics:

Introducing Machine Learning. This first topic in this Machine Learning with R series will introduce you to the world of machine learning. The IDE we will be using during this video series is R Studio. Learn about the three components of every machine learning algorithm: Representation, Evaluation, and Optimization. Representation includes decision trees, graphical models, neural networks, support vector machines, and model ensembles. Evaluation includes accuracy, squared error, posterior probability, and entropy. Optimization includes combinatorial, convex, and constrained optimization. The types of machine learning algorithms are explained as well, including supervised (inductive) learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
K Nearest Neighbor (KNN). This second topic in this Machine Learning with R series covers the K Nearest Neighbor (K-NN) algorithm in detail. Follow along with machine learning expert Zanis Khan and practice applying this algorithm.
Linear Regression. This third topic in this Machine Learning with R series covers the linear regression algorithm in detail. Linear regression establishes a relationship between a dependent variable and one or more independent variables. Follow along with machine learning expert Zanis Khan and practice applying this algorithm.
Text Mining Part 1. This fourth topic in this Machine Learning with R series explains text mining, which is the process of exploring and analyzing large amounts of unstructured text data to identify patterns in the data. Text mining use cases are explained, including classification of news stories, email filtering, and clustering documents or web pages.
Text Mining Part 2. This fifth topic in this Machine Learning with R series continues our coverage of text mining. This part is very much hands-on, so follow along with machine learning expert Zanis Khan and perform text mining to a data set.
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction