* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Siam Mask Object Tracking and Segmentation in OpenCV Python  (Lida 156 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 60 lectures (1h 10m) | Size: 530.7 MB
Implement Real-Time Object Tracking and Segmentation using OpenCV Python

What you'll learn:
Object Tracking with Segmentation
Fundamentals of Siam Mask
How to set-up your programming environment
How to work with your own Dataset
Train Siam Mask For your own Applications
How to test if Siam Mask is working

Requirements
Python Programming Experience
PC or Laptop
Nvidia CUDA enabled - GPU (Optional)
OpenCV Experience

Description
What Is Siam Mask

In this course you will learn how to implement both real-time object tracking and semi-supervised video object segmentation with a single simple approach. SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting the loss with a binary segmentation task.

Once trained, SiamMask solely relies on a single bounding-box initialization and operates online, producing class-agnostic(any class will work) object segmentation masks and rotated bounding boxes at 35 frames per second.

Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state-of-the-art among real-time trackers on VOT-2018 dataset, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017

Applications of Siam Mask

Automatic Data Annotation - Regardless of Class

Rotoscoping

Robotics

Object Detection and targeting

Virtual Background without Green Screen

What you will Learn?

You will learn the fundamentals of Siam Mask and how it can be used for fast online object tracking and segmentation. You will first learn about the origins of Siam Mask, how it was developed as well its amazing performance on real world tests. Next we do a paper review to understand more about the architecture of Siamese Networks with regards to computer vision.

Thereafter, we move on to the implementation of Siam Mask by setting up the environment for development so that you can run Siam Mask on your own PC or Laptop. Once that is working, we will show you how to train Siam Mask for your own custom applications.

Once trained, you will need a method in which to test your new model so that you can apply it for real world applications.

Why Should I Take this Course?

You should take this course, because Siam Mask is a State of Art Model that has robust accuracy and performance and can be used in a wide variety of applications.

Who this course is for
Computer Vision Developers
Python and OpenCV curious about Object Tracking
Automated Data Annotation


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction