* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    Hoje às 10:40
  • j.s.: dgtgtr a todos  4tj97u<z
    07 de Julho de 2025, 13:50
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    06 de Julho de 2025, 11:43
  • j.s.: [link]
    05 de Julho de 2025, 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    05 de Julho de 2025, 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    05 de Julho de 2025, 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51

Autor Tópico: Solving the Diffusion/Heat equation by Fourier Tranform  (Lida 109 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Solving the Diffusion/Heat equation by Fourier Tranform
« em: 19 de Junho de 2021, 10:49 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 8 lectures (1h 44m) | Size: 728 MB
PDE solved by Fourier Transform (part 2)

What you'll learn:
How to use the Fourier Trasforms to tackle the problem of solving Partial Differential Equations (PDE)
the physics and mathematics behind the diffusion process (related to particles contained in a fluid for example)
Mathematical details about the usage of the Fourier Transform

Requirements
This course comes after my previous course: "Partial Differential Equations solved by Fourier Transform"
Multivariable Calculus (especially: the Jacobian, the Laplacian, etc.)
Complex Calculus (basics of Fourier series and residues could help)
Calculus (especially: derivatives, integrals)

Description
This course aims to show how the Fourier Transform (FT) can be a powerful tool to solve Partial Differential Equations (PDE). The PDE that is treated in the course is the Diffusion/Heat equation. This equation is first derived from Physics principles described in the language of mathematics, then it is rigorously solved.

The course is the second installment of: "Partial Differential Equations solved by Fourier Transform", which was previously published by the author. Therefore, it could be helpful to the student to already know the basics of those subjects treated in that course.

Calculus and Multivariable Calculus are other necessary prerequisite to the course, especially the topics related to: calculation of derivatives and integrals, how to compute the gradient, the Laplacian of a function, spherical coordinates, the calculation of the Jacobian, etc.

Some knowledge of residues used in Complex Calculus might be useful as well.

Who this course is for
Students who would like to know more about the solution to the diffusion/heat equation and its relation with the Fourier Tranform


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction