* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Solving the Diffusion/Heat equation by Fourier Tranform  (Lida 154 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Solving the Diffusion/Heat equation by Fourier Tranform
« em: 19 de Junho de 2021, 10:49 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 8 lectures (1h 44m) | Size: 728 MB
PDE solved by Fourier Transform (part 2)

What you'll learn:
How to use the Fourier Trasforms to tackle the problem of solving Partial Differential Equations (PDE)
the physics and mathematics behind the diffusion process (related to particles contained in a fluid for example)
Mathematical details about the usage of the Fourier Transform

Requirements
This course comes after my previous course: "Partial Differential Equations solved by Fourier Transform"
Multivariable Calculus (especially: the Jacobian, the Laplacian, etc.)
Complex Calculus (basics of Fourier series and residues could help)
Calculus (especially: derivatives, integrals)

Description
This course aims to show how the Fourier Transform (FT) can be a powerful tool to solve Partial Differential Equations (PDE). The PDE that is treated in the course is the Diffusion/Heat equation. This equation is first derived from Physics principles described in the language of mathematics, then it is rigorously solved.

The course is the second installment of: "Partial Differential Equations solved by Fourier Transform", which was previously published by the author. Therefore, it could be helpful to the student to already know the basics of those subjects treated in that course.

Calculus and Multivariable Calculus are other necessary prerequisite to the course, especially the topics related to: calculation of derivatives and integrals, how to compute the gradient, the Laplacian of a function, spherical coordinates, the calculation of the Jacobian, etc.

Some knowledge of residues used in Complex Calculus might be useful as well.

Who this course is for
Students who would like to know more about the solution to the diffusion/heat equation and its relation with the Fourier Tranform


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction