* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Supervised Learning for AI with Python and Tensorflow 2  (Lida 149 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Supervised Learning for AI with Python and Tensorflow 2
« em: 25 de Maio de 2021, 11:57 »

Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 48.0 KHz
Language: English | Size: 6.71 GB | Duration: 21h 5m
Uncover the Concepts and Techniques to Build and Train your own Artificial Intelligence Models

What you'll learn
The basics of supervised learning: What are parameters, What is a bias node, Why do we use a learning rate
Techniques for dealing with data: How to Split Datasets, One-hot Encoding, Handling Missing Values
Vectors, matrices and creating faster code using Vectorization
Mathematical concepts such as Optimization, Derivatives and Gradient Descent
Gain a deep understanding behind the fundamentals of Feedforward, Convolutional and Recurrent Neural Networks
Build Feedforward, Convolutional and Recurrent Neural Networks using only the fundamentals
How to use Tensorflow 2.0 and Keras to build models, create TFRecords and save and load models
Practical project: Style Transfer - Use AI to draw an image in the style of your favorite artist
Practical project: Object Detection - Use AI to Detect the bounding box locations of objects inside of images
Practical project: Transfer Learning - Learn to leverage large pretrained AI models to work on new datasets
Practical project: One-Shot Learning - Learn to build AI models to perform tasks such as Face recognition
Practical project: Text Generation - Build an AI model to generate text similar to Romeo and Juliet
Practical project: Sentiment Classification - Build an AI model to determine whether text is overall negative or positive
Practical project: Attention Model - Build an attention model to build an interpretable AI model

Description
Gain a deep understanding of Supervised Learning techniques by studying the fundamentals and implementing them in NumPy.

Gain hands-on experience using popular Deep Learning frameworks such as Tensorflow 2 and Keras.

Section 1 - The Basics:

- Learn what Supervised Learning is, in the context of AI

- Learn the difference between Parametric and non-Parametric models

- Learn the fundamentals: Weights and biases, threshold functions and learning rates

- An introduction to the Vectorization technique to help speed up our self implemented code

- Learn to process real data: Feature Scaling, Splitting Data, One-hot Encoding and Handling missing data

- Classification vs Regression

Section 2 - Feedforward Networks:

- Learn about the Gradient Descent optimization algorithm.

- Implement the Logistic Regression model using NumPy

- Implement a Feedforward Network using NumPy

- Learn the difference between Multi-task and Multi-class Classification

- Understand the Vanishing Gradient Problem

- Overfitting

- Batching and various Optimizers (Momentum, RMSprop, Adam)

Section 3 - Convolutional Neural Networks:

- Fundamentals such as filters, padding, strides and reshaping

- Implement a Convolutional Neural Network using NumPy

- Introduction to Tensorfow 2 and Keras

- Data Augmentation to reduce overfitting

- Understand and implement Transfer Learning to require less data

- Analyse Object Classification models using Occlusion Sensitivity

- Generate Art using Style Transfer

- One-Shot Learning for Face Verification and Face Recognition

- Perform Object Detection for Blood Stream images

Section 4 - Sequential Data

- Understand Sequential Data and when data should be modeled as Sequential Data

- Implement a Recurrent Neural Network using NumPy

- Implement LSTM and GRUs in Tensorflow 2/Keras

- Sentiment Classification from the basics to the more advanced techniques

- Understand Word Embeddings

- Generate text similar to Romeo and Juliet

- Implement an Attention Model using Tensorflow 2/Keras

Who this course is for:
Beginner Python programmers curious about Artificial Intelligence
People looking for an AI course that teaches both the theoretical and practical aspects of Artificial Intelligence

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction