* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Supervised Learning for AI with Python and Tensorflow 2  (Lida 74 vezes)

0 Membros e 2 Visitantes estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115675
  • Karma: +0/-0
Supervised Learning for AI with Python and Tensorflow 2
« em: 25 de Maio de 2021, 11:57 »

Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 48.0 KHz
Language: English | Size: 6.71 GB | Duration: 21h 5m
Uncover the Concepts and Techniques to Build and Train your own Artificial Intelligence Models

What you'll learn
The basics of supervised learning: What are parameters, What is a bias node, Why do we use a learning rate
Techniques for dealing with data: How to Split Datasets, One-hot Encoding, Handling Missing Values
Vectors, matrices and creating faster code using Vectorization
Mathematical concepts such as Optimization, Derivatives and Gradient Descent
Gain a deep understanding behind the fundamentals of Feedforward, Convolutional and Recurrent Neural Networks
Build Feedforward, Convolutional and Recurrent Neural Networks using only the fundamentals
How to use Tensorflow 2.0 and Keras to build models, create TFRecords and save and load models
Practical project: Style Transfer - Use AI to draw an image in the style of your favorite artist
Practical project: Object Detection - Use AI to Detect the bounding box locations of objects inside of images
Practical project: Transfer Learning - Learn to leverage large pretrained AI models to work on new datasets
Practical project: One-Shot Learning - Learn to build AI models to perform tasks such as Face recognition
Practical project: Text Generation - Build an AI model to generate text similar to Romeo and Juliet
Practical project: Sentiment Classification - Build an AI model to determine whether text is overall negative or positive
Practical project: Attention Model - Build an attention model to build an interpretable AI model

Description
Gain a deep understanding of Supervised Learning techniques by studying the fundamentals and implementing them in NumPy.

Gain hands-on experience using popular Deep Learning frameworks such as Tensorflow 2 and Keras.

Section 1 - The Basics:

- Learn what Supervised Learning is, in the context of AI

- Learn the difference between Parametric and non-Parametric models

- Learn the fundamentals: Weights and biases, threshold functions and learning rates

- An introduction to the Vectorization technique to help speed up our self implemented code

- Learn to process real data: Feature Scaling, Splitting Data, One-hot Encoding and Handling missing data

- Classification vs Regression

Section 2 - Feedforward Networks:

- Learn about the Gradient Descent optimization algorithm.

- Implement the Logistic Regression model using NumPy

- Implement a Feedforward Network using NumPy

- Learn the difference between Multi-task and Multi-class Classification

- Understand the Vanishing Gradient Problem

- Overfitting

- Batching and various Optimizers (Momentum, RMSprop, Adam)

Section 3 - Convolutional Neural Networks:

- Fundamentals such as filters, padding, strides and reshaping

- Implement a Convolutional Neural Network using NumPy

- Introduction to Tensorfow 2 and Keras

- Data Augmentation to reduce overfitting

- Understand and implement Transfer Learning to require less data

- Analyse Object Classification models using Occlusion Sensitivity

- Generate Art using Style Transfer

- One-Shot Learning for Face Verification and Face Recognition

- Perform Object Detection for Blood Stream images

Section 4 - Sequential Data

- Understand Sequential Data and when data should be modeled as Sequential Data

- Implement a Recurrent Neural Network using NumPy

- Implement LSTM and GRUs in Tensorflow 2/Keras

- Sentiment Classification from the basics to the more advanced techniques

- Understand Word Embeddings

- Generate text similar to Romeo and Juliet

- Implement an Attention Model using Tensorflow 2/Keras

Who this course is for:
Beginner Python programmers curious about Artificial Intelligence
People looking for an AI course that teaches both the theoretical and practical aspects of Artificial Intelligence

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction