* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Python Library Series The Definitive Guide to Statsmodels  (Lida 307 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126169
  • Karma: +0/-0
Python Library Series The Definitive Guide to Statsmodels
« em: 11 de Outubro de 2019, 17:59 »

Python Library Series: The Definitive Guide to Statsmodels
.MP4 | Video: 916x514, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 290 MB
Duration: 52 mins | Genre: eLearning | Language: English

 Dhiraj, a data scientist and machine learning evangelist, continues his teaching of Python libraries by explaining through both lecture and practice the Statsmodels library.

Click here to watch all of Dhiraj Kumar's courses including the full Python Library Series.

In this course, become adept with the Statsmodels library through these seven topics:

    Introducing Statsmodels. This first topic in the Python Library series introduces this Python package which allows us to explore data, create statistical models, and perform statistical tests. Learn all about this Python stack oriented towards data analysis, data science, and statistics. Statsmodels is built on top of the numeric library Numpy.
    Statsmodels Advantages and Disadvantages. Know the advantages of Statsmodels in this second topic in the Python Library series. Statsmodels offers hardcore statistics, econometrics support, strong R programming language alignment, and post-estimation analysis. Disadvantages include poor documentation, less features than scikit-learn, and less modular.
    Statsmodels Installation. Install Statsmodels in this third topic in the Python Library series.
    Statsmodels Linear Regression. Perform linear regression using Statsmodels in this fourth topic in the Python Library series. Linear regression is an algorithm that finds a linear relationship between a dependent variable and an independent variable. It is a statistical method that allows us to determine the relationship between two continuous variables.
    Statsmodels Logistic Regression. Perform logistic regression using Statsmodels in this fifth topic in the Python Library series. Logistic regression is an algorithm that describes the relationship between one dependent binary variable and one or more independent variables.
    Statsmodels ARIMA. Forecast time series using Statsmodels Auto Regressive Integrated Moving Average (ARIMA) in this sixth topic in the Python Library series.
    Statsmodels Seasonal ARIMA. Forecast seasonality using Statsmodels Seasonal Auto Regressive Integrated Moving Average (SARIMA) in this seventh topic in the Python Library series.
               

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction