* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Python Library Series The Definitive Guide to PyTorch  (Lida 331 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126169
  • Karma: +0/-0
Python Library Series The Definitive Guide to PyTorch
« em: 07 de Setembro de 2019, 14:17 »

Python Library Series: The Definitive Guide to PyTorch
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour | 308 MB
Genre: eLearning | Language: English

Introducing PyTorch. This first topic in the Python Library series introduces this fast and flexible deep learning framework produced by FaceBook. Learn all about this open source machine learning framework and its uses within computer vision and natural language processing. Apart from the Python interface, PyTorch also has a C++ frontend. Be able to explain tensors, variables, Autograd, and optimizers. Know the functionality of the torch.nn PyTorch module, which exposes neural-network specific functionality.
PyTorch Advantages. Know the advantages of PyTorch in this second topic in the Python Library series. PyTorch is used frequently for deep learning and artificial intelligence applications because it is Pythonic, easy to learn, well-documented, easy to debug, able to provide data parallelism, dynamic graph supportable, and able to export models in the Standard Open Neural Network Exchange Format (ONNX).
PyTorch Tensors. Create CPU and GPU tensors in this third topic in the Python Library series. A scalar is zero-dimensional, a vector is one-dimensional, a matrix is two-dimensional, and a tensor is three or more dimensions. PyTorch tensors are similar to numpy arrays with the additional features that tensors can be used on a GPU to accelerate computing.
PyTorch Autograd. Install and then apply automatic differentiation using autograd (automatic gradient) in this fourth topic in the Python Library series.
PyTorch vs. Tensorflow. Contrast PyTorch with TensorFlow in areas of functionality, performance, debugging, and visualization in this fifth topic in the Python Library series. PyTorch is a deep learning framework based on Torch. Tensorflow is an open source deep learning framework based on Theano. Tensorflow defines a computational graph statically before a model can run. PyTorch is much more dynamic with computational graphs than Tensorflow.
PyTorch vs. Keras. Contrast PyTorch with Keras in areas of functionality, performance, cross-platform, debugging, and visualization in this sixth topic in the Python Library series. Keras is a high-level application programming interface that sits on top of other deep learning frameworks such as Tensorflow.
PyTorch Linear Regression. Perform linear regression in this seventh topic in the Python Library series. Linear Regression is an algorithm that finds a linear relationship between a dependent variable and an independent variable. It is a statistical method that allows us to determine the relationship between two continuous variables.
   

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction