* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Random Forest Algorithm using Python  (Lida 127 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Random Forest Algorithm using Python
« em: 02 de Novembro de 2023, 12:08 »


Random Forest Algorithm using Python
Published 10/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 19m | Size: 553 MB
Learn Random Forest Algorithm using Python

What you'll learn
Through this training we are going to learn and apply how the random forest algorithm works
Improve the model Performance using Random Forest.
Build Random Forest Model on Training Data set.
Predict and Validate Performance of Model.
Requirements
Basic Machine learning concepts and Python
Description
Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making.
hrough this training we are going to learn and apply how the random forest algorithm works and several other important things about it.
The course includes the following;
1) Extract the Data to the platform.
2) Apply data Transformation.
3) Bifurcate DatTa into Training and Testing Data set.
4) Built Random Forest Model on Training Data set.
5) Predict using Testing Data set.
6) Validate the Model Performance.
7) Improve the model Performance using Random Forest.
8) Predict and Validate Performance of Model.
Random forest in Python offers an accurate method of predicting results using subsets of data, split from global data set, using multi-various conditions, flowing through numerous decision trees using the available data on hand and provides a perfect unsupervised data model platform for both Classification or Regression cases as applicable; It handles high dimensional data without the need any pre-processing or transformation of the initial data and allows parallel processing for quicker results.
The unique feature of Random forest is supervised learning. What it means is that data is segregated into multiple units based on conditions and formed as multiple decision trees. These decision trees have minimal randomness (low Entropy), neatly classified and labeled for structured data searches and validations. Little training is needed to make the data models active in various decision trees.
Who this course is for
Aspiring Data Scientists
Artificial Intelligence/Machine Learning/ Engineers

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/13e44a713b717c8eaaa93b3c0f166cc6/rixrb.Random.Forest.Algorithm.using.Python.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/C7766541360eB133/rixrb.Random.Forest.Algorithm.using.Python.rar

nitroflare.com:
Citar
https://nitroflare.com/view/2448186A231877F/rixrb.Random.Forest.Algorithm.using.Python.rar