* Cantinho Satkeys

Refresh History
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35
  • j.s.: :13arvoresnatalmagiagifs:
    21 de Dezembro de 2025, 19:01
  • j.s.: try65hytr a todos  :smiles_natal: :smiles_natal:
    21 de Dezembro de 2025, 19:01
  • FELISCUNHA: ghyt74  49E09B4F  e bom fim de semana  4tj97u<z
    20 de Dezembro de 2025, 11:20
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 classic dgf64y
    19 de Dezembro de 2025, 05:26
  • cereal killa: ghyt74 e boa semana de chuva e frio  RGG45wj erfb57j
    15 de Dezembro de 2025, 11:26
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    14 de Dezembro de 2025, 09:28
  • j.s.: tenham um excelente fim de semana com muitas comprinhas  :13arvoresnatalmagiagifs: sdfgsdg
    13 de Dezembro de 2025, 14:58
  • j.s.: dgtgtr a todos  :smiles_natal:
    13 de Dezembro de 2025, 14:57
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   :34rbzg9:
    13 de Dezembro de 2025, 12:29
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i classic bve567o+
    12 de Dezembro de 2025, 05:34

Autor Tópico: Advanced Rigid Body Mechanics in Three Dimensions  (Lida 163 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Advanced Rigid Body Mechanics in Three Dimensions
« em: 16 de Junho de 2021, 09:40 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 22 lectures (4h 5m) | Size: 1.81 GB
Mathematical intuition behind the fundamental equations in rigid body mechanics

What you'll learn:
How to derive the fundamental equations on rigid body kinematics and dynamics
How to derive energy conservation from Newton's laws (Virtual Work Theorem)
Fundamental properties of the angular velocity of a rigid body

Requirements
Newton laws of motion
Calculus, Multivariable Calculus (especially: derivatives, multiple integrals)
Vectors, dot products, cross products

Description
This is a course on the fundamental equations and concepts which revolve around rigid bodies. All the equations are derived with detailed explanations, but the following mathematical prerequisites are needed: vectors, dot and cross products, some linear algebra (matrices, determinants, eingenvectors, eigenvalues), some calculus (especially: derivatives, volume integrals). As regards the physics of the course, the only prerequisite is the knowledge of Newton's equations. In fact, these equations constitute the physical foundation of the course, since the rigid body mechanics are constructed from point-particle dynamics (i.e. the law: F=ma, where F is the total force acting on a point-particle, a is the acceleration, m is the mass, is postulated to be true for point-particles).

In the course, the inertia matrix is derived, which will appear in the equation of moments, as well as in the expression of the kinetic energy of a rigid body. The concept of angular velocity is also derived, and it will be shown that it is unique. Other important formulae regarding kinematics are derived, which will relate velocities and accelerations of generic points of a rigid body.

In kinematics, we will derive Chasles' theorem, or Mozzi-Chasles' theorem, which says that the most general rigid body displacement can be produced by a translation along a line (called Mozzi axis), in conjunction with a rotation about the same line.

Who this course is for
Students who would like to develop mathematical intution to tackle problems about rigid body systems.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction