* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    Hoje às 20:37
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    27 de Abril de 2025, 09:56
  • j.s.: tenham um excelente domingo  49E09B4F
    26 de Abril de 2025, 22:09
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Abril de 2025, 22:09
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    26 de Abril de 2025, 11:02
  • JPratas: try65hytr Pessoal  4tj97u<z  htg6454y Bom Feriado  yu7gh8 k7y8j0
    25 de Abril de 2025, 03:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Abril de 2025, 10:38
  • cereal killa:
    19 de Abril de 2025, 21:17
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    19 de Abril de 2025, 18:19
  • j.s.:
    19 de Abril de 2025, 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    19 de Abril de 2025, 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29

Autor Tópico: Advanced Rigid Body Mechanics in Three Dimensions  (Lida 100 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 119864
  • Karma: +0/-0
Advanced Rigid Body Mechanics in Three Dimensions
« em: 16 de Junho de 2021, 09:40 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 22 lectures (4h 5m) | Size: 1.81 GB
Mathematical intuition behind the fundamental equations in rigid body mechanics

What you'll learn:
How to derive the fundamental equations on rigid body kinematics and dynamics
How to derive energy conservation from Newton's laws (Virtual Work Theorem)
Fundamental properties of the angular velocity of a rigid body

Requirements
Newton laws of motion
Calculus, Multivariable Calculus (especially: derivatives, multiple integrals)
Vectors, dot products, cross products

Description
This is a course on the fundamental equations and concepts which revolve around rigid bodies. All the equations are derived with detailed explanations, but the following mathematical prerequisites are needed: vectors, dot and cross products, some linear algebra (matrices, determinants, eingenvectors, eigenvalues), some calculus (especially: derivatives, volume integrals). As regards the physics of the course, the only prerequisite is the knowledge of Newton's equations. In fact, these equations constitute the physical foundation of the course, since the rigid body mechanics are constructed from point-particle dynamics (i.e. the law: F=ma, where F is the total force acting on a point-particle, a is the acceleration, m is the mass, is postulated to be true for point-particles).

In the course, the inertia matrix is derived, which will appear in the equation of moments, as well as in the expression of the kinetic energy of a rigid body. The concept of angular velocity is also derived, and it will be shown that it is unique. Other important formulae regarding kinematics are derived, which will relate velocities and accelerations of generic points of a rigid body.

In kinematics, we will derive Chasles' theorem, or Mozzi-Chasles' theorem, which says that the most general rigid body displacement can be produced by a translation along a line (called Mozzi axis), in conjunction with a rotation about the same line.

Who this course is for
Students who would like to develop mathematical intution to tackle problems about rigid body systems.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction