* Cantinho Satkeys

Refresh History
  • j.s.: tenham um excelente fim de semana  49E09B4F
    08 de Novembro de 2025, 16:19
  • j.s.: dgtgtr a todos  4tj97u<z
    08 de Novembro de 2025, 16:18
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    07 de Novembro de 2025, 12:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    07 de Novembro de 2025, 03:38
  • j.s.: try65hytr a todos
    06 de Novembro de 2025, 19:11
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34

Autor Tópico: Advanced Rigid Body Mechanics in Three Dimensions  (Lida 143 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126356
  • Karma: +0/-0
Advanced Rigid Body Mechanics in Three Dimensions
« em: 16 de Junho de 2021, 09:40 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 22 lectures (4h 5m) | Size: 1.81 GB
Mathematical intuition behind the fundamental equations in rigid body mechanics

What you'll learn:
How to derive the fundamental equations on rigid body kinematics and dynamics
How to derive energy conservation from Newton's laws (Virtual Work Theorem)
Fundamental properties of the angular velocity of a rigid body

Requirements
Newton laws of motion
Calculus, Multivariable Calculus (especially: derivatives, multiple integrals)
Vectors, dot products, cross products

Description
This is a course on the fundamental equations and concepts which revolve around rigid bodies. All the equations are derived with detailed explanations, but the following mathematical prerequisites are needed: vectors, dot and cross products, some linear algebra (matrices, determinants, eingenvectors, eigenvalues), some calculus (especially: derivatives, volume integrals). As regards the physics of the course, the only prerequisite is the knowledge of Newton's equations. In fact, these equations constitute the physical foundation of the course, since the rigid body mechanics are constructed from point-particle dynamics (i.e. the law: F=ma, where F is the total force acting on a point-particle, a is the acceleration, m is the mass, is postulated to be true for point-particles).

In the course, the inertia matrix is derived, which will appear in the equation of moments, as well as in the expression of the kinetic energy of a rigid body. The concept of angular velocity is also derived, and it will be shown that it is unique. Other important formulae regarding kinematics are derived, which will relate velocities and accelerations of generic points of a rigid body.

In kinematics, we will derive Chasles' theorem, or Mozzi-Chasles' theorem, which says that the most general rigid body displacement can be produced by a translation along a line (called Mozzi axis), in conjunction with a rotation about the same line.

Who this course is for
Students who would like to develop mathematical intution to tackle problems about rigid body systems.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction