* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09

Autor Tópico: Deep Learning Prerequisites: Linear Regression in Python (Update)  (Lida 193 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115453
  • Karma: +0/-0

Deep Learning Prerequisites: Linear Regression in Python (Update)
Bestseller | h264, yuv420p, 1280x720 |ENGLISH, aac, 44100 Hz, 2 channels | 6h 10mn | 1.08 GB
Created by: Lazy Programmer Inc.
Data science: Learn linear regression from scratch and build your own working program in Python for data analysis.

What you'll learn

Derive and solve a linear regression model, and apply it appropriately to data science problems
Program your own version of a linear regression model in Python

Requirements

How to take a derivative using calculus
Basic Python programming
For the advanced section of the course, you will need to know probability

Description

This course teaches you about one popular technique used in machine learning, data science and statistics: linear regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own linear regression module in Python.

Linear regression is the simplest machine learning model you can learn, yet there is so much depth that you'll be returning to it for years to come. That's why it's a great introductory course if you're interested in taking your first steps in the fields of:

deep learning

machine learning

data science

statistics

In the first section, I will show you how to use 1-D linear regression to prove that Moore's Law is true.

What's that you say? Moore's Law is not linear?

You are correct! I will show you how linear regression can still be applied.

In the next section, we will extend 1-D linear regression to any-dimensional linear regression - in other words, how to create a machine learning model that can learn from multiple inputs.

We will apply multi-dimensional linear regression to predicting a patient's systolic blood pressure given their age and weight.

Finally, we will discuss some practical machine learning issues that you want to be mindful of when you perform data analysis, such as generalization, overfitting, train-test splits, and so on.

This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for FREE.

If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want to know how to apply your skills as a software engineer or "hacker", this course may be useful.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

calculus (taking derivatives)

matrix arithmetic

probability

Python coding: if/else, loops, lists, dicts, sets

Numpy coding: matrix and vector operations, loading a CSV file

TIPS (for getting through the course):

Watch it at 2x.

Take handwritten notes. This will drastically increase your ability to retain the information.

Write down the equations. If you don't, I guarantee it will just look like gibberish.

Ask lots of questions on the discussion board. The more the better!

Realize that most exercises will take you days or weeks to complete.

Write code yourself, don't just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Who this course is for:

People who are interested in data science, machine learning, statistics and artificial intelligence
People new to data science who would like an easy introduction to the topic
People who wish to advance their career by getting into one of technology's trending fields, data science
Self-taught programmers who want to improve their computer science theoretical skills
Analytics experts who want to learn the theoretical basis behind one of statistics' most-used algorithms
Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction